
ZFS benchmarks on Linux 
Thomas LEIBOVICI – CEA/DAM 

thomas.leibovici@cea.fr 

 

 

 

This document describes benchmarks and I/O profiling done with the ‘pios’ tool over 

ZFS/DMU on Linux. 

 

 

The hardware used for theses tests is: 

 

• 4 Intel Xeon 3.16GHz processors 

• 4 GB memory 

• Red Hat Enterprise Linux 4 update 2 

• DDN S²A9550 with SATA disks (8+2P luns x 12) - LPFC connections. 

 

 

ZFS striping performance 
 

The first benchmark consists in striping a various amount of luns in a ZFS pool, with 1 to 64 

pios’ threads writing in dmuio mode. 

As a reference for theses values, we also measured performances that we got with a lun 

formatted in ext3, writing with directIO and posixIO pios’ modes. 

 

 
 

Pios benchmark on ZFS/DMU 

0 

50

100

150

200

250

300

350

400

1 10 100

Threads

MB/s 

ZFS 1 lun
ZFS 2 luns
ZFS 4 luns
ZFS 8 luns
ZFS 12 luns
ext3 posixIO 

ext3 directIO



When doing a ‘dd’ command directly on such a device, we get about 350MB/s. 

Thus, considering ZFS overhead, getting 210 MB/s with 1 lun in ZFS pool is quite a good 

performance. 

What’s more, performances with 1, 2 and 4 threads exceed those of ext3. 

However, there is no speed-up at all using multiple-threads, and the throughput decreases as 

number of threads increases. 

Regarding stripe, we get a poor scalability: only 30MB/s more with a second lun in pool, 

10MB/s speed-up with 2 more luns… And the throughput reaches it maximum at 350MB/s 

with 12 luns. 

 

Not very enjoying… Thus, in the next benchmarks, we will try to increase theses 

performances and analyze where the bottlenecks are. 

 

Impact of checksums 
 

In this benchmark, we compare performances with/without SHA256 checksums on data. 

(This graph displays the result with 4 pios threads. We get about the same results with another 

thread count). 

 

Effect of checksums

0

50

100

150

200

250

300

350

400

4 luns 8 luns 12 luns

Luns in pool

M
B

/s checksum=ON

checksum=OFF

 
 

We get a small improvement (~10 MB/s) when disabling checksums (green bars). 

However, this feature appears not having a huge impact on performances. 

 



Changing ZFS max block size 
 

Natively, ZFS doesn’t write data blocks larger than 128kB, in order to optimize 

“CopyOnWrite” operations. However, we know that writing huge blocks is much more 

efficient with DDN S²A9550. Because of this, we tried to see if we got more bandwidth when 

increasing this max block size. 

 

Tuning ZFS max block size
(4 DDN luns stripe)

0

50

100

150

200

250

300

350

400

1 10 100

Threads

M
B

/s

Max ZFS block 128k

Max ZFS block 512k

Max ZFS block 1M

 
 

When changing this size to 512kB or 1MB, we get a significant improvement (20 to 50MB/s). 

Of course, this bench was done writing data from scratch, so CoWs were almost limited to 

metadata blocks. Thus, this modification should only be considered if Lustre is mostly writing 

objects from scratch, without modifying small pieces of data. 

 

However, it appears this tuning does not enhance threads scalability or stripe performances. 

 



ZIO threads 
 

Most ZFS’ IOs are done by a pool of threads called “zio_taskq_threads” (also called 

“spa_zio_issue” threads). By default, this pool consists of 8 threads. Let’s modify this value to 

see its impact on performances (it can be changed in “libzpool/spa.c”). 

 

In this benchmark, we are writing to a 6 luns zpool. ZFS max block size is set to 1MB. We 

then change zio threads count from 1 to 32: 

 

 
 

It first appears zio_taskq_threads count has a strong impact of ZFS’ throughput. Also, the 

default value of 8 threads is not optimal. We get the best performance using at least 12 zio 

threads. 

 

IO and load profiling 
 

For profiling ZFS workload, we used several system tracers and profiling tools like strace, 

gstack and gprof. We also instrumented ZFS in order to determine how much time each 

thread was doing effective work (checksumming, doing IOs, …). 

 

In the following benchmarks, we launch the following ‘pios’ command: 
pios -c 2M -o 128M -n 64 -t 4 -s 128M -L dmuio -p ZFS 
 
We use a 1MB ZFS max block size, and a 6 luns zpool. 

 

Impact of zio threads count 

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25 30 35

"zio_taskq_threads"

MB/s 4 pios threads
8 pios threads



Using 8 zio_taskq_threads 

 

Runtime: 24.57s 

Bandwidth: 333MB/s 

 

Thread type count 

Time spend for 

checksums 

(s/thread) 

Time spend 

for IOs 

(s/thread) 

Nbr of 

simultaneous 

IOs 

spa_sync 1 11.81 0.61 1 

spa_zio_issue 

readers 

8 ~0 ~0 - 

spa_zio_issue 

writers 

8 ~0 19.10 7.54 

spa_zio_intr 8 ~0 0 - 

 

It appears that most of the workload consists of spa_zio_issue threads’ IOs. Those IOs are 

well parallelized (7.54 simultaneous IOs with 8 writters). 

A bad point is that checksumming data is mostly done by a single thread: the spa_sync thread 

(48% of runtime). 

 

Using 16 zio_taskq_threads 

 

Then, we do the same test with more “spa_zio_issue” threads, in order to see the evolution of 

the load profile (this can be done in “spa.c”, modifying the value of “zio_taskq_threads”). 

We are now using 16 “spa_zio_issue” threads instead of 8: 

 

Runtime: 21.79s 

Bandwidth: 375 MB/s 

 

Thread type count 

Time spend for 

checksums 

(s/thread) 

Time spend 

for IOs 

(s/thread) 

Nbr of 

simultaneous 

IOs 

spa_sync 1 11.75 0.64 1 

spa_zio_issue 

readers 

16 ~0 ~0 - 

spa_zio_issue 

writers 

16 ~0 11.51 11.35 

spa_zio_intr 16 ~0 0 - 

 

With more “spa_zio_issue” threads, IOs are faster (12s/thread for IOs instead of 19s), and 

well parallelized (about 11 simultaneous IOs with 16 threads). Thus, the overall performance 

is better than using 8 threads: 40MB/s speed-up. 

 

However, the time for checksumming data is about the same (~11.8s), because this job is only 

done by the “spa_sync” thread. This seems to be an important bottleneck. 

 



Parallelizing checksums 
 

To parallelize data checksumming, we have to go deeper in ZFS sources… To do that, we 

tried to parallelize operations done by the “dbuf_sync_list” function. To keep the correct 

order for synchronizing objects, we only parallelized “dbuf_sync_leaf” operations for each 

parent node: when we have to synchronize a set of leaves for a given parent node, we queue 

them so a dedicated pool of threads (called “dbuf_sync_leaf” threads) processes them in 

parallel. We then wait for all this node’s children to be synchronized before managing over 

parent nodes, sequentially and in the same order as the original ZFS behavior. 

 

In the following benchmarks, we launch the following ‘pios’ command: 
pios -c 2M -o 128M -n 64 -t 4 -s 128M -L dmuio -p ZFS 
 
We use a 1MB ZFS max block size, a 6 luns zpool, and 16 zio_taskq_threads. 

 

Profile 

 

Here is the profile we get using 4 “dbuf_sync_leaf” threads. 

 

Runtime: 19.64s 

Bandwidth: 417 MB/s 

 

Thread type count 

Time spend for 

checksums 

(s/thread) 

Nbr of 

simultaneous 

checksums 

Time spend 

for IOs 

(s/thread) 

Nbr of 

simultaneous 

IOs 

spa_sync 1 0.08 1 0.44 1 

dbuf_sync_leaf 4 4.48 2.40 - - 

 

With this mod, we have a better parallelization of data checksumming (2.4 simultaneous 

checksums with 4 “dbuf_sync_leaf” threads), and the performance is enhanced (417 MB/s 

instead of 375 MB/s). 

 



Performance evolution 

 

Let’s see performances we get when using different “dbuf_sync_leaf” threads count. 

 

 
 

It appears that using several “dbuf_sync_leaf” threads is always better than in the non-

parallelized case. However, when using more and more threads, performances are decreasing. 

We get the best performance using 2 “dbuf_sync_leaf” threads. 

 
 

Conclusion 
 

This study of ZFS/DMU showed that: 

 

• In the current version, pios benchmark over DMU does not scale using multiple 

threads; 

 

• Increasing ZFS max block size results in better performances with pios’ access pattern 

over DDN S²A9550 hardware; 

 

• zio_taskq_threads count has also a strong impact on performances; 

 

• An important bottleneck resides in the “dbuf_sync_list” function which is called by a 

single thread (“spa_sync” thread): it would be interesting to parallelize it. Our “quick” 

mod for parallelizing calls to “dbuf_sync_leaf” resulted in a significant improvement. 

I’m sure ZFS experts will do wonderful things by reconsidering “dbuf_sync_list” 

mechanism. 

 

Impact of dbuf_sync parallelization 

200

250

300

350

400

450

500

0 5 10 15 20

dbuf_sync_leaf threads

MB/s zio_taskq_thr=16
zio_taskq_thr=32
zio_taskq_thr=64


