
Feed Use Cases and API

Sun Microsystems

1/25/07

1 Use Cases

1.1 Audit

A particular site policy requires audit logs of �lesystem usage (access, create,
delete, write, etc) and errors (speci�cally permission failures, perhaps quota
overrun). Files A and B are on MDT0001, where the sysadmin has set up
a Lustre audit feed with mask ALL FILESjALL EVENTS. User on client 1
opens �le A, reads �le A, removes �le A. User on client 2 attempts to open
�le B, but fails with permission denied. The audit feed, presented as a �le un-
der /mnt/MDT0001/.lustre/audit, is updated synchronously with event records
A/open/ok, A/read/ok, A/delete/ok, B/open/EACCESS. The feed is read,
translated into human-readable form, and piped into a regular �le in /var/logs/audit
where it is periodically purged by a logging daemon.

The requirements of this scenario are:

� audit log, including not only �lesystem changes but also access events,
atime changes, request failures.

� feed based on audit log

� feed set up (�lter, retention policy)

1.2 Database

An external database is to be updated with �lesystem changes for customer-
speci�c purposes (audit, query, HSM, etc.). An audit feed is set up on each
server; the feed consumer sends entires to the database backend. The �lesystem
events are integrated into database, even in the event of power loss and recovery.

Entries are removed from the audit feed only after the feed consumer has indi-
cated completion (database integration) of the entry.

1

Cross-server synchronization required is not required; if a single event results in
two changelog entries on two servers, these need not be reconciled/recombined
before submission to the consumer. However, a common identi�er will indicate
linked entries. For example, renaming a �le from MDT0001 to MDT0002 will
result in a changelog entry on each server; these will share a UUID so that the
consumer (database) can act appropriately.

The requirements of this scenario are:

� audit log, including not only �lesystem changes but also access events,
atime changes

� feed based on audit log

� feed set up (�lter, retention policy)

� shared UUID for compound transaction

� full recovery semantics on feed

2 Feed API

2.1 Feed API

Feeds provide userspace access to a speci�c changelog. Multiple feeds may all be
based on the same server changelog (e.g. using di�erent �lters). Multiple user
processes (consumers) may access a feed. Feeds are transactional and persistent;
feed entries are guaranteed to be replayable in the event of a server restart, from
the point where the consumer last indicated completion.

2.1.1 Feed content

Feed entries will be packed binary data, with the form

struct feed entry f

u32 fe len; total record length

u32 fe type; transaction type

u64 fe seq; local feed sequence number

u64 fe cookie; synchronization cookie (for distributed events)

u64 fe time; event time, server-local

u32 fe result; return code (0=success)

void *fe data; transaction type-specific struct

Transaction types:

2

enum fcreate, unlink, open, close, read, write, attrib, rename, link, adming

Transaction type-speci�c struct contains event-speci�c data. For example:

struct feed entry open f

ll fid fid; (see lustre idl.h)

u32 fsuid;

u32 fsgid;

u32 cap;

u32 flags;

u32 mode;

u32 filename len;

u32 clientname;

char *filename;

char *clientname;

Feed content examples (expressed in human-readable form, produced by a Sun
provided feed consumer demo utility):

logid=1 cookie=0 type=OPEN rc=0 name=/etc/passwd fid=23a87346:003d source=cli1@tcp0 mode=O RW uid=root gid=root

logid=2 cookie=0 type=UNLINK rc=-EACCESS fid=23a87346:003d source=cli2@tcp0 uid=joe gid=users

2.1.2 Feed setup

New feeds are de�ned through lfs or a direct call to the liblustre c library (llapi).

int llapi audit init(char *fileset, struct audit policy *policy)

starts a new audit feed. <�leset> is a previously de�ned �leset or a server name.
Filesets are de�ned via the Fileset API. If <�leset> is not available locally,
ENOENT is returned. Special user permissions are required to start an audit
log; else EPERM is returned. The new feed is created as $MNT/.lustre/audit/<feedname>,
where <feedname> is <�leset>[xx], with increasing numerical xx if the name
already exists.

<policy> is a structure containing

struct audit policy f

3

u32 ap filtermask;

u32 ap entry timeout;

u32 ap abort timeout;

int ap canceltype;

int ap flags;

<�ltermask> is a bitwise event mask:

mask bit description

AF CREATE new �le creation
AF WRITE �le modify/append
AF READ �le read
AF OPEN open/close
AF ATTRIB �le attribute / EA change
AF DELETE �le removal
AF LINK soft/hard link

AF RENAME rename
AF FILE all of the above (shortcut)

AF ADMIN administrative event
AF ERR report failed requests also

Retention policies (see Feed I/O below) may include:

� entry timeout X - automatically cancel each feed record after X seconds
(0=o�).

� abort timeout X - abort recording and destroy the feed after X second
timeout (0=o�).

� canceltype - de�ne the cancellation policy of the feed entries; i.e. when an
entry can be removed from the feed.

{ AC ONESHOT (default) - after an entry has been read, it may be
cancelled when the consumer starts reading the next entry. (The
continuing read implies the previous read has been fully processed).
There should only be a single reader with this policy (a second
open(2) call should return EALREADY.)

{ AC BATCH - make all feed entries available to consumers as they
come in. One of the consumers at some point explicitly batch cancels
records (see below). (Entries must be locked during read.)

�
ags

{ AFG RATELIMIT - don't report multiple consecutive similar en-
tries.

The feed setup remains persistent across reboots (in e.g. a feed database), until
it is explicitly destroyed:

4

int llapi audit destroy(char *feedname)

Feed setup info is available for retrieval from an existing feed:

int llapi audit getinfo(char *feedname, struct audit policy *policy)

2.1.3 Feed I/O

The feed output data stream looks like a regular �le under $MNT/.lustre/audit/<feedname>.
A feed may be open(2)ed by one or more readers. Feed entries are retrieved us-
ing read(2) on the �le. Feed entries are removed from the feed depending on
the cancellation policy:

AC ONESHOT: the �lesystem will indicate that only a single entry's worth
of data is available. When that entry has been read, a subsequent read(2) or
�le close(2) indicates that the feed consumer has completed processing of the
previous entry, and that entry is removed (the reference to the changelog is
dropped).

AC BATCH: the �lesystem will indicate all available entries. The entries are
not removed until explicitly cancelled by write(2)ing the last committed logid
value (followed by a newline) back into the �le descriptor. Multiple readers are
allowed; the largest last-committed value written controls entry removal.

Upon recovery, we restart the feed from the �rst uncancelled entry. The feed
consumers are responsible for skipping any replayed feed entries they may have
already processed (identi�ed by repeated logid).

5

