
Changelogs and Feeds

Nathan Rutman

1/30/08

1 Introduction

A changelog is a log of data or metadata changes. In general, these will track
�lesystem operations conveyed via one or more RPCs. Changelogs are used by
consumers such as userspace audit logs, mirroring OSTs or �les, database feeds,
etc. Changelogs are stored persistently and transactionally and are removed
upon completion.

There are 3 sub
avors of changelogs (we intend to use the same changelog facility
for all).

1. rollback (undo) logs - used for �lesystem recovery

2. replication logs - used to propagate changes from a master server to a replica

3. audit logs - record auditable actions (�le create, access violation, etc.)

Audit logs are presented to userspace consumers via a special transactional,
readable �le called a feed. A replication log may also be presented as a feed, if
a userspace consumer is to be used. Rollback logs are only used internally.

2 Requirements

Implement changelogs as a low level service for the following use cases.

2.1 Audit logs (text)

A particular site policy requires audit logs of �lesystem usage (access, create,
delete, write, etc) and errors (speci�cally permission failures, perhaps quota
overrun). Files A and B are on MDT0001, where the sysadmin has set up
a Lustre audit feed with mask ALL FILESjALL EVENTS. User on client 1
opens �le A, reads �le A, removes �le A. User on client 2 attempts to open

1

�le B, but fails with permission denied. The audit feed, presented as a �le un-
der /mnt/MDT0001/.lustre/audit, is updated synchronously with event records
A/open/ok, A/read/ok, A/delete/ok, B/open/EACCESS. The feed is read and
piped into a regular �le in /var/logs/audit where it is periodically purged by a
logging daemon.

The requirements of this scenario are:

� audit log, including not only �lesystem changes but also access events,
atime changes, request failures.

� feed based on audit log

� feed set up (�lter, retention policy)

2.2 Database

An external database is to be updated with �lesystem changes for customer-
speci�c purposes (audit, query, HSM, etc.). An audit feed is set up on each
server; the feed consumer sends entries to the database back-end. The �lesystem
events are integrated into database, even in the event of power loss and recovery.

Entries are removed from the audit feed only after the feed consumer has indi-
cated completion (database integration) of the entry.

Cross-server synchronization required is not required; if a single event results in
two changelog entries on two servers, these need not be reconciled/recombined
before submission to the consumer. However, a common identi�er will indicate
linked entries. For example, renaming a �le from MDT0001 to MDT0002 will
result in a changelog entry on each server; these will share a UUID so that the
consumer (database) can act appropriately.

The requirements of this scenario are:

� audit log, including not only �lesystem changes but also access events,
atime changes

� feed based on audit log

� feed set up (�lter, retention policy)

� shared cookie for compound transactions

� full recovery semantics on feed

2

2.3 Replication

A �lesystem replica is de�ned to actively track changes in the master �lesystem,
to provide widely-distributed access to �les and provide redundancy in case of
catastrophic failure at one site (Continuity Of OPerations). The replica has a
di�erent layout than the master �lesystem. Changes in data or metadata on the
master produce changelog entries; these entries are re-executed on the replica to
bring the replica up-to-date. The replica must remain internally consistent at
all times. The replica must remain up-to-date within some time frame (e.g. new
�les on master are copied to replica within 5 minutes). The replica will always
remain consistent with the master in the event of a cache miss (e.g. �le 1 on
master is modi�ed, replica will block until extents have been copied to replica
if a client on the replica tries to read it).

The requirements of this scenario are:

� Replication log, including only �lesystem changes (not audit-type events,
e.g. permission failures).

� Objects and byte ranges of modi�ed data must be recorded in the OST
changelogs; reintegration of the changes on the replica will result in I/O
to the master requesting this data.

� Metadata changes should be completely described in the changelog so that
no additional RPCs are needed during reintegration.

� Replica must remain up-to-date within a reasonable (user-de�nable?) time
frame. Optimization: we need only propagate \�nal" versions of modi�ed
objects for objects undergoing rapid rewrites. (But the time limit still
applies to prevent major data loss for COOP scenarios.)

� Replica must remain consistent with master on speci�c �le access.

� Replica must always remain internally consistent (master dies, replica
must roll back to an epoch boundary).

� Replica must be fully scalable (e.g. 5 widely-distributed replicas of a large
master system must not signi�cantly slow Lustre).

2.4 Reintegration

File or metadata is changed on caching (
ash cache or proxy) server. The
caching servers may have a di�erent layout than the master servers. Client-
driven changes in data or metadata on the cache produce replication changelog
entries on the caching servers. When the cache is
ushed, the batched changelogs
are sent to the master servers to be reintegrated. Multiple changes may be
merged in the cache; only the net e�ects need to be sent and/or reintegrated.

The requirements of this scenario are:

3

� Replication log, including only �lesystem changes (not audit-type events,
e.g. permission failures).

� The objects (or inodes) of modi�ed data must be recorded in the changelog;
reintegration of the changes on the master will result in I/O to the caches
requesting these.

� Metadata changes should be completely described in the changelog so that
no additional RPCs are needed during reintegration.

� Only \net" changes need to be reported/reintegrated on the master.

� Master must always remain internally consistent (if reintegration can't
complete, master must roll back to an epoch boundary).

2.5 Rollback

Master servers record �lesystem changes for each epoch in a rollback log. Rein-
tegration of changes from a writeback cache server also results in rollback log
entries on the master. Reintegration fails when one of the master servers reboots
in the middle of reintegration. WBC recovery mechanism (not de�ned in this
HLD) decides that this incomplete epoch must be rolled back on all the master
servers to reestablish a consistent �lesystem state. The committed operations
for this epoch are backed out of all master servers by undoing each operation in
the rollback log (in reverse order) until the previous epoch boundary record is
met.

The requirements of this scenario are:

� Rollback log, including only �lesystem changes, stored locally on destina-
tion targets.

� Rollback log entries are stored in the same �lesystem transaction (jour-
nalled) as the operation itself.

� Rollback log entries are created for direct client transactions as well as
caching server reintegration. Note that for a caching server, a replication
log is created on the cache, and during reintegration of this log a rollback
log is created on the master.

� During rollback, committed log entries are rolled back in reverse order,
until the previous epoch boundary is met.

� Rollback log entries must contain su�cient detail to fully undo the trans-
action.

� Old disk blocks are linked to the end of the rollback log so that the orig-
inal data is stored without copying. When the log is eventually unlinked
(rollback is no longer needed), the blocks will be freed automatically.

� E�cient storage of rollback data.

4

2.6 Coverage

Operations contained in changelogs

� create / delete

� rename

� hard/soft link

� permission change

� extended attribute change

� mtime, atime change

� administrative changes (quotas, �lesets, log messages, �lesystem proc set-
tings?)

� access violation (audit only)

� epoch boundary

� �le writes

� �le reads (audit only)

It is worth noting that all the information above except �le read/writes is avail-
able from the MDTs, and even then there are still the open(2)
ags and mtime
indications of writes. If byte range information is not required for audit, then
there is no need to record (or send) audit changelogs on the OSTs. Rollback
logs are still required on the OSTs to recover the original data. Replication logs
are still required on OSTs to record modi�ed byte ranges.

3 Functional speci�cation

3.1 Implementation constraints

3.1.1 Base on llogs

Changelogs will be implemented as a
avor of Lustre llogs after relatively minor
enhancements are made to the llog facility:

� multiple cancels of a single record (multiple replicators using a single
changelog)

� appending old data blocks (for rollback logs)

5

3.1.2 Create entries only on demand

Changelog entries are created only when required by an existing consumer(s),
and are canceled when that consumer(s) has �nished processing the change. Fil-
ters are placed on the \front end", reducing the number of transactions entering
the changelogs instead of \�ltering out" entries that are already there. Filters
may include operations, �les (�lesets), users, etc.

Audit logs are only required if audit is turned on. Replication logs are only
required for replicas or caching servers. Rollback logs are required for distributed
transaction recovery (currently CMD).

3.1.3 Registration

Audit and replication logs are only kept when there is at least one consumer;
a registration process is therefore implied. It also follows that logs cannot be
generated retroactive to registration (boundless history is not kept).

3.1.4 Independent changelogs per server

Changelogs are per-server, and may be further restricted to a particular �leset.
Changelogs from di�erent servers / �lesets will not be recombined by Lustre.
Applications that require cross-server feeds have to combine separate per-server
feeds within the application. Note: a Lustre-level feed combiner could be in-
cluded later.

3.1.5 Feeds available on 1 client only

Feeds are FIFO �les, accessed only though Lustre clients (llite), as<mntpt>/.lustre/feed/<feedname>.
The feed is available only on a single client (the one that set up the feed). (A
FIFO allows us to \forget" the old entries in the �le and prevents the �le growing
without bounds.)

3.1.6 Replication only on epoch boundaries

Reintegration on a replica should only be executed on full epoch boundaries.
They may be executed less frequently - no more often than every X seconds.
Too-frequent reintegration will unnecessarily load the �lesystem.

3.1.7 No byte range information in audit logs

Audit logs will contain only information currently available to the MDTs. This
includes open()s, mtime and atime updates, but not byte ranges. This obviates
the need for OST audit logs (not OST rollback or replication logs, however).

6

3.2 Changelog content

The following information must be stored for every recorded transaction.

1. record length

2.
ags (committed, ignore, rolled back)

3. epoch

4. transaction id (transno)

5. synchronization cookie (shared among a single distributed transaction)

6. reference �d

7. �d forward link

8. �d backward link

9. transaction type (and version)

10. transaction type-speci�c struct (variable length)

The reference �d is the \primary" �d a transaction is concerned with (some
transactions may have multiple �ds associated; primary should just be chosen
consistently). The �d forward/backward links are a bookkeeping feature to
simplify tracking future/past related changes, potentially for single-�le rollback
or replication. An llog pointer to the last llog entry for each in-memory inode is
stored in the inode struct for any subsequent backward link. The forward link
may be installed later (see Origination).

The transaction-speci�c struct includes any items necessary to undo a transac-
tion (for undo logs), replicate a transaction on a remove server (for replication
logs), or all audit data (for audit logs).

3.2.1 Replication

For MDT's, the mdt reint record information is su�cient (including eadata,
logcookies). For OSTs, the object, object version, and extents are required. The
replica servers are responsible for translating target names and layout mapping
(no assumptions should be made about the replica(s) at log recording time.
Adressed in Replication HLD.)

7

3.2.2 Rollback

Rollback is not a symmetric operation with respect to the information available
in the RPC. The log entry must contains the \reverse" transaction; e.g. the
\unlink �d 123" transaction must provide the \create �le foo under parent �d
234 with �d 123, stripe pattern XXX, and objects[] on osts[]" instructions. (Note
this still results in a new inode.) Everything must be restored during rollback.
For the unlink example, the MDT must restore the ownership, striping, EA,
�d, parent(s), ctime, mtime, atime, mtime of parent(s). (Performance impact -
this will e�ectively require copying the entire inode data, plus the parent list.
Potentially we can just mark the inode \pending delete" until epoch commit?)

For MDTs, a mdt reint rec structure is su�cient for the basic operation, but
not the restoration of mtime, ctime, parent �d(s), etc.

1. mdt reint rec

2. mtime, atime of �le

3. additional operation-speci�c info: ctime, parent dir(s), mtime, atime of
parent dir(s)

RPC undo record must restore:

unlink full inode entry (EAs, ctime, mode, owner, etc), parent dir(s) on
MDT; objects on OSTs

link unlink inode on MDT
create unlink inode on MDT, unlink objects on OSTs
rename original name, parent
setattr full inode entry, mtime
write partially and fully overwritten blocks, mtime

For OSTs, the previous version of the objects are required.

3.2.3 Audit

For MDTs

1. mdt reint rec (for detailed event description)

2. consumer list (for multi-consumer audit logs)

3. parent �d (for pathname reconstruction)

4. user id: nid, pid, uid

5. mtime, atime

6. event type (e.g. create, delete, write, read, permission failure)

For OSTs, no audit logs are required (see Implementation Constraints).

8

3.3 Changelog entry origination

Changelogs are kept per-server for every �lesystem operation taking place on
that server, either initiated directly by a client or indirectly as part of a dis-
tributed transaction from another server.

Every �le has a list of �lesets of which it is a member stored in an EA. Every �le is
also automatically a member of the GLOBAL �leset. When audit or replication
logs are set up, associated PRE and POST methods are de�ned for the �leset.
The PRE and POST methods contain any applicable �lters and describe any
changelog-related actions that need to occur before the RPC is initiated (PRE)
and after the RPC completes (POST). Whenever a server starts to process an
RPC referencing a �le, each of the �le's �leset PRE and POST functions are
called.

PRE is called before a request is processed. POST is called when the epoch
containing the request has been globally committed.

PRE and POSTmethods are derived from policy information in a global database.
Policies for a particular �leset are downloaded to a server and cached the �rst
time a member �le is accessed on that server.

3.3.1 Rollback

Rollback changelog entries are generated on the master or proxy servers for
every transaction that results in a local disk change.

A transaction request must be reversed before it is committed in order to retrieve
all the information necessary to undo the operation.

During playback of a rollback log it is unnecessary to propagate the rollback of
dependent transactions to remote servers because the other servers will perform
their own rollback to the same common, consistent epoch.

3.3.2 Replication

Replication changelog entries are generated on a server for every incoming RPC
that results in a �lesystem change, when there is at least one registered replica-
tion consumer.

Replication logs need to be generated and stored persistently as activity on the
server takes place.

It is desirable to reduce the size of replication log before sending. To compact
logs, earlier entries may be marked with an \ignore"
ag, implying that a later
operation will reverse or subsume the e�ect of the earlier entry, such that only
the later entry need be replayed on the master. A forward pointer to the later
transaction may also be stored in the earlier transaction (since we're modifying
it anyhow) for e�cient per-�le replay.

9

3.3.3 Audit

Audit changelog entries are recorded only when:

1. a consumer exists

2. the operations in question meet the �lter criteria.

Filter criteria may include speci�c �les (�leset), operations, or conditions (e.g.
violations). RPCs that result in items that would be �ltered out are simply not
recorded in a changelog log.

3.4 Filesets

Feeds are typically de�ned to watch a particular subset of �les or directories
on the �lesystem. This subset is designated a �leset. Filesets may be used
for purposes other than feeds as well (replication, mounting a subset of the
namespace).

3.4.1 Implementation contraints

1. Recursive

Directories are always considered fully recursive; any �le or directory in
the directory tree is part of the �leset as well.

2. Multiple Membership

A �le may be part of multiple �lesets. One �leset may implicitly include
other �lesets. Operations on a �le should a�ect all �lesets it belongs to,
and vice-versa.

3. Global

Fileset de�nitions are shared between all MDTs.

3.4.2 Membership

When a new �leset is set up, the �leset name is added to a global �leset database.
This is used for tracking the existence of the �leset, assigning a �leset number,
and recording consumer information for the �leset. Consumer information in-
cludes audit policies for any active feeds, replication policies, and other �leset
description. [?The �leset database should be stored as a regular �le on an
OST; this is accessable via each MDT's OSCs (do we need llite for �le ac-
cess?)][The �leset database should be stored in the same manner as the Fid
Location Database, which is also shared between MDTs.]

10

When a �le or directory is added to the �leset, an RPC is sent to the MDT
owning the �le/dir, which adds the �leset number to the �le's �leset list (an
extended attribute). A high-order bit on the �leset number is also set marking
this �le as part of the �leset de�nition.

Whenever a �le path is traversed, parent �lesets are copied to the child's �leset
list (with the de�nition bit masked out), erasing the existing �leset numbers
except where the de�nition bit is set. When a directory is added or removed
from a �leset (via the �leset API), the inodes for subtrees under that directory
must be
ushed so that we re-execute path traversal on lookup. Note that if
�les are accessed without path traversal they are not guaranteed to be identi�ed
as part of the �leset. A �le or directory explicitly removed from a �leset via
the �leset API will store the �leset number with the de�nition bit set as well as
another high-order bit signifying exclusion.

If a �le is moved, it inherits �leset de�nitions from its new parent, but again
retains those with the de�nition bit set. Rename does not a�ect the �leset list.

3.5 Feeds

Feeds are the userspace interface to an audit or replication changelog. The feed
gates access to the log and translates log entries into a user-consumable form.
Every audit log has exactly one feed. A replication log may have zero or one
feeds (it may have an internal consumer instead).

A new audit changelog is started whenever a feed is set up via the feed API.
Filtering takes place before entries enter the audit log; audit logs are pre�ltered.

4 Use cases

See section 2.

4.1 File post-processing

A post-processing operation is to be started whenever a new �le is created in
/srv/cam1, /srv/cam2, or /srv/cam4. The post-processing operation needs the
�lename, and should be started when the new �le is �rst closed.

1. Fileset 'towatch' is created using �leset API, below

2. Directories are added to 'towatch' using �leset API

3. Feed is created to watch CREATE and OPEN/CLOSE events on this
�leset

11

4. The feed FIFO is opened by the consumer

5. The consumer loops on feed entries with a blocking read on the feed FIFO.
The consumer checks to see when newly created �les are �rst closed.

llapi fileset new("towatch");

llapi fileset add("towatch", "/srv/cam1");

llapi fileset add("towatch", "/srv/cam2");

llapi fileset add("towatch", "/srv/cam4");

struct feed policy policy=ffp filtermask=FF CREATE|FF OPENg;
llapi feed new("towatch", *policy);

fd=open($MNT/.lustre/feed/towatch, O RDONLY);

loop f

read(fd, struct feed entry *entrybuf);

if entrybuf->fe type = create then add fe data.fid to createdlist;

else if entrybuf->fe type = close and fe data.fid is on createdlist then

postprocess(llapi fid2path(fe data.fid));

g

5 Logic speci�cation

5.1 Llog modi�cations

5.1.1 Multiple cancel

An audit log driving multiple feeds requires a reference for each feed. A repli-
cation log driving multiple replicators may also bene�t. For an initial imple-
mentation, making multiple copies of single-cancel llog records is su�cient. As
a re�nement, a list of consumers could be maintained within each llog entry to
avoid multiple copies of the entry.

5.1.2 Store old data

Rollback requires restoration of an object's previous version. For OST objects,
old data blocks are removed from the old inode and linked into the end of the
llog's block list (and the entry is marked with the appropriate record length to
\skip" the data blocks for the next entry). When the llog entry is cancelled and
the log (eventually) unlinked, the blocks are freed automatically.

Under ext3, for full-block overwrites, new blocks must be allocated for the new
data to replace the old block links in the �le extents. The old blocks are removed
from the extents and appended to the llog as above. For partial-block overwrites,
the previous partial block data must be read and stored directly in the llog.

12

However, under ZFS, the blocks are already COW'ed and so it is only necessary
to add a reference to the old blocks into the llog, or re-link them into a \to-be-
purged" �le.

5.1.3 Delayed send

In the case of rollback logs, entries may be removed after an epoch global com-
mit. For audit and replication logs, entries are processed only after global
commit (see below). Therefore a changelog epoch commit callback is used for
every changelog. Log entries should not be sent to a replicator or placed in a
feed until this callback; a \delay" bit is added to the llog entry to control this.
A llog replicator can not see any entries with this bit set.

5.2 Changelog entry recording

5.2.1 Rollback

A rollback log can be stored on an external device with links pointing back to
blocks on the target device. These blocks are linked into a single special hidden
�le(s) on the target, and removed as undo logs records are cancelled. (See Store
Old Data).

Rollback records are recorded before or in the same transaction as the main
RPC.

Rollback entries may be cancelled after the entry's epoch has been globally
committed.

5.2.2 Audit and replication

Audit and replication changelogs may be stored on the target device or on an
external device. These entries must be processed (sent to consumers) after a
distributed transaction has fully committed. This prevents partial updates from
propagating to a replica (in case master crashes and recovers). However, given
that the RPC may have been destroyed by the time a distributed transaction is
marked complete, the changelog entry info will need to be recorded before the
RPC is freed.

Thus a two-part write is used for audit and replication changelogs:

1. PRE: record changelog entry (setting \delay" bit)

2. commit RPC

3. POST: propagate changelog entry to consumers (unset \delay" bit, RPC
is sent to llog replicators)

13

The entries can be enabled for propogation after some delay past the commit
(it is acceptable for audit and replication to trail changes with some time lag).
Therefore entries will be enabled when the server determines the entry's epoch
has been globally committed. Multiple committed messages may be collected
into a single RPC to llog replicators to reduce network load.

After recovery, servers will eventually establish whether an epoch has been glob-
ally committed; the audit and replication entries will wait for that event.

Replication and audit logs are only kept when there is at least one registered
consumer. Replication and audit logs may have multiple consumers; entries are
cancelled when the all of the registered consumers have processed the entry. See
5.1.1.

5.3 Fileset API

Start a new �leset de�nition:

int llapi fileset new(char *fileset);

Add a �le or directory to a �leset:

int llapi fileset add(char *fileset, char *filename);

Directories added to a �leset refer to the entire subtree. Moving a �le out of
a subtree removes it from the �leset. A �le or directory explicitly added to a
�leset retains its membership if renamed.

Remove a �le or directory from a �leset:

int llapi fileset remove(char *fileset, char *filename);

A child �le or directory may be removed from a �leset that includes the parent.
This has the e�ect of pruning a subtree out of the �leset tree.

Destroy the �leset :

int llapi fileset destroy(char *fileset);

A �leset cannot be destroyed while in use by a feed, mount, etc. (EBUSY).

Retrieve status or other info about a �leset:

int llapi fileset getinfo(char *fileset, struct fileset info *info)

14

5.4 Feed API

Feeds provide userspace access to a server changelog. A single user process
(consumer) may access a feed. Feeds are transactional and persistent; feed
entries are guaranteed to be replayable in the event of a server restart, from the
point where the consumer last indicated completion.

5.4.1 Feed content

Feed entries will be packed binary data, with the form

struct feed entry f

u32 fe len; total record length

u32 fe type; transaction type

u64 fe seq; local feed sequence number

u64 fe cookie; synchronization cookie (for distributed events)

u64 fe time; event time, server-local

u32 fe result; return code (0=success)

void *fe data; transaction type-specific struct

Transaction types:

enum ft create, t unlink, t open, t close, t read, t write, t attrib, t rename, t link, t adming

Transaction type-speci�c struct contains event-speci�c data. (Ideally this will
contain enough data for a userspace �lesystem replicator; in many cases a
MDT REINT structure would be su�cient.) For example:

struct feed entry open f

ll fid fid; (see lustre idl.h)

ll fid parent fid;

nid t clientnid;

u32 fsuid;

u32 fsgid;

u32 cap;

u32 flags;

u32 mode;

u32 filename len;

char *filename;

Feed content examples (expressed in human-readable form, produced by a Sun
provided feed consumer demo utility):

15

logid=1 cookie=0 type=OPEN rc=0 name=/etc/passwd fid=23a87346:003d source=cli1@tcp0 mode=O RW uid=root gid=root

logid=2 cookie=0 type=UNLINK rc=-EACCESS fid=23a87346:003d source=cli2@tcp0 uid=joe gid=users

5.4.2 Feed setup

A feed is created (and available) on a single Lustre client as a FIFO �le. New
feeds are de�ned through lfs or a direct call to the liblustre c library (llapi).

int llapi feed new(char *fileset, struct feed policy *policy)

starts a new audit feed. <�leset> is a previously de�ned �leset or a server name.
Filesets are de�ned via the Fileset API. Special user permissions are required to
start an audit log; else EPERM is returned. The new feed is created as a FIFO
at $MNT/.lustre/feed/<feedname>, where <feedname> is <�leset>[xx], with
increasing numerical xx if the name already exists.

<policy> is a structure containing

struct feed policy f

u32 fp filtermask;

u32 fp entry timeout;

u32 fp abort timeout;

u32 fp abort size;

int fp flags;

<�ltermask> is a bitwise event mask:

mask bit description masked types

FF CREATE new �le creation t create
FF WRITE �le modify/append t write
FF READ �le read t read
FF OPEN open/close t open, t close
FF ATTRIB �le attribute / EA change t attrib
FF DELETE �le removal t unlink
FF LINK soft/hard link t link

FF RENAME rename t rename
FF FILE all of the above (shortcut) t create, t unlink, t open,

t close, t read, t write, t attrib,
t rename, t link

FF ADMIN administrative event t admin
FF ERR report failed requests also err & (t create, t unlink, t open,

t close, t read, t write, t attrib,
t rename, t link, t admin)

FF REPLICATE all events related to �leset
replication

t create, t unlink, t write,
t attrib, t rename, t link

16

Retention policies (see Feed I/O below) may include:

� entry timeout - automatically cancel each feed record after X seconds
(0=o�, default=0).

� abort timeout - abort recording and destroy the feed after X second time-
out (0=o�, default=0).

� abort size - abort recording after the number of unconsumed records ex-
ceeds a maximum (0=o�, default=1000).

�
ags

{ FG RATELIMIT - don't report multiple consecutive similar entries.

The feed setup remains persistent across reboots (in e.g. a feed database), until
it is explicitly destroyed:

int llapi feed destroy(char *feedname)

Feed setup info and status is available for retrieval from an existing feed:

int llapi feed getinfo(char *feedname, struct feed policy *policy, struct feed status *status)

Two functions for converting FID to �lename or full path name are also provided.
Full path name is at the �lesystem's disgression for hard-linked �les.

int llapi fid2file(ll fid fid, char *filename);

int llapi fid2path(ll fid fid, char *pathname);

5.4.3 Feed I/O

The feed output data stream is presented as a FIFO �le (see mk�fo) under
$MNT/.lustre/feed/<feedname>. A feed may be open(2)ed by only a single
reader at a time. Feed entries are retrieved using read(2) on the �le. Reads will
block until new entries are available, or poll(2) or select(2) may be used.

Feed entries are removed from the feed according to the following policy:

The �le descriptor will make available only full feed entry records. With each
read(2) (or close(2)) of the fd, all of the entries from the previous read(2) are
marked as consumed. For example: read1 reads fe seq 1-5, nothing is marked
consumed; read2 reads fe seq 6-7, seq 1-5 are marked consumed; close1, seq 6-7
are marked consumed.

Upon recovery, we restart the feed from the �rst unconsumed entry. The feed
consumers are responsible for skipping any replayed feed entries they may have
already processed (identi�ed by repeated fe seq).

17

5.4.4 Feed entry ordering

For consumers combining the data from multiple feeds (e.g. database), partial
ordering of operations is required. Since clients synchronize the epoch among
servers for sequential transactions, using the epoch is su�cient to order \before
relations", while unrelated transactions may be reported in a random order.
Distributed transactions are linked via a common cookie contained in all a�ected
changelogs and reported in all a�ected feeds. Consumers are reponsible for
linking/ignoring distributed transaction entries internally.

6 State management

6.1 State invariants

6.2 Scalability & performance

6.3 Recovery changes

6.4 Locking changes

6.5 Disk format changes

6.6 Wire format changes

6.7 Protocol changes

6.8 API changes

6.9 RPCs order changes

7 Alternatives

Feeds may be de�ned as regular �les instead of FIFOs, which allows multiple
readers and multiple clients. However, this complicates entry cancellation (we
need an explicit cancel), but more signi�cantly the �le would grow without
bound. The beginning of the �le would be empty where entries were cancelled
out of it, but the �le size would still have to grow for seek(), etc. A FIFO
presents a less confusing picture to users.

8 Focus for inspections

18

