
Changelogs and Feeds

Nathan Rutman

1/30/08

1 Use cases

1.1 File post-processing

A post-processing operation is to be started whenever a new �le is created in
/srv/cam1, /srv/cam2, or /srv/cam4. The post-processing operation needs the
�lename, and should be started when the new �le is �rst closed.

1. Fileset 'towatch' is created using �leset API, below

2. Directories are added to 'towatch' using �leset API

3. Feed is created to watch CREATE and OPEN/CLOSE events on this
�leset

4. The feed FIFO is opened by the consumer

5. The consumer loops on feed entries with a blocking read on the feed FIFO.
The consumer checks to see when newly created �les are �rst closed.

llapi fileset new("towatch");

llapi fileset add("towatch", "/srv/cam1");

llapi fileset add("towatch", "/srv/cam2");

llapi fileset add("towatch", "/srv/cam4");

struct feed policy policy=ffp filtermask=FF CREATE|FF OPENg;
llapi feed new("towatch", *policy);

fd=open($MNT/.lustre/feed/towatch, O RDONLY);

loop f

read(fd, struct feed entry *entrybuf);

if entrybuf->fe type = create then add fe data.fid to createdlist;

else if entrybuf->fe type = close and fe data.fid is on createdlist then

postprocess(llapi fid2path(fe data.fid));

g

1

2 User APIs

2.1 Fileset API

Start a new �leset de�nition:

int llapi fileset new(char *fileset);

Add a �le or directory to a �leset:

int llapi fileset add(char *fileset, char *filename);

Directories added to a �leset refer to the entire subtree. Moving a �le out of
a subtree removes it from the �leset. A �le or directory explicitly added to a
�leset retains its membership if renamed.

Remove a �le or directory from a �leset:

int llapi fileset remove(char *fileset, char *filename);

A child �le or directory may be removed from a �leset that includes the parent.
This has the e�ect of pruning a subtree out of the �leset tree.

Destroy the �leset :

int llapi fileset destroy(char *fileset);

A �leset cannot be destroyed while in use by a feed, mount, etc. (EBUSY).

Retrieve status or other info about a �leset:

int llapi fileset getinfo(char *fileset, struct fileset info *info)

2.2 Feed API

Feeds provide userspace access to a server changelog. A single user process
(consumer) may access a feed. Feeds are transactional and persistent; feed
entries are guaranteed to be replayable in the event of a server restart, from the
point where the consumer last indicated completion.

2

2.2.1 Feed content

Feed entries will be packed binary data, with the form

struct feed entry f

u32 fe len; total record length

u32 fe type; transaction type

u64 fe seq; local feed sequence number

u64 fe cookie; synchronization cookie (for distributed events)

u64 fe time; event time, server-local

u32 fe result; return code (0=success)

void *fe data; transaction type-specific struct

Transaction types:

enum ft create, t unlink, t open, t close, t read, t write, t attrib, t rename, t link, t adming

Transaction type-speci�c struct contains event-speci�c data. (Ideally this will
contain enough data for a userspace �lesystem replicator; in many cases a
MDT REINT structure would be su�cient.) For example:

struct feed entry open f

ll fid fid; (see lustre idl.h)

ll fid parent fid;

nid t clientnid;

u32 fsuid;

u32 fsgid;

u32 cap;

u32 flags;

u32 mode;

u32 filename len;

char *filename;

Feed content examples (expressed in human-readable form, produced by a Sun
provided feed consumer demo utility):

logid=1 cookie=0 type=OPEN rc=0 name=/etc/passwd fid=23a87346:003d source=cli1@tcp0 mode=O RW uid=root gid=root

logid=2 cookie=0 type=UNLINK rc=-EACCESS fid=23a87346:003d source=cli2@tcp0 uid=joe gid=users

3

2.2.2 Feed setup

A feed is created (and available) on a single Lustre client as a FIFO �le. New
feeds are de�ned through lfs or a direct call to the liblustre c library (llapi).

int llapi feed new(char *fileset, struct feed policy *policy)

starts a new audit feed. <�leset> is a previously de�ned �leset or a server name.
Filesets are de�ned via the Fileset API. Special user permissions are required to
start an audit log; else EPERM is returned. The new feed is created as a FIFO
at $MNT/.lustre/feed/<feedname>, where <feedname> is <�leset>[xx], with
increasing numerical xx if the name already exists.

<policy> is a structure containing

struct feed policy f

u32 fp filtermask;

u32 fp entry timeout;

u32 fp abort timeout;

u32 fp abort size;

int fp flags;

<�ltermask> is a bitwise event mask:

mask bit description masked types

FF CREATE new �le creation t create
FF WRITE �le modify/append t write
FF READ �le read t read
FF OPEN open/close t open, t close
FF ATTRIB �le attribute / EA change t attrib
FF DELETE �le removal t unlink
FF LINK soft/hard link t link

FF RENAME rename t rename
FF FILE all of the above (shortcut) t create, t unlink, t open,

t close, t read, t write, t attrib,
t rename, t link

FF ADMIN administrative event t admin
FF ERR report failed requests also err & (t create, t unlink, t open,

t close, t read, t write, t attrib,
t rename, t link, t admin)

FF REPLICATE all events related to �leset
replication

t create, t unlink, t write,
t attrib, t rename, t link

Retention policies (see Feed I/O below) may include:

4

� entry timeout - automatically cancel each feed record after X seconds
(0=o�, default=0).

� abort timeout - abort recording and destroy the feed after X second time-
out (0=o�, default=0).

� abort size - abort recording after the number of unconsumed records ex-
ceeds a maximum (0=o�, default=1000).

� ags

{ FG RATELIMIT - don't report multiple consecutive similar entries.

The feed setup remains persistent across reboots (in e.g. a feed database), until
it is explicitly destroyed:

int llapi feed destroy(char *feedname)

Feed setup info and status is available for retrieval from an existing feed:

int llapi feed getinfo(char *feedname, struct feed policy *policy, struct feed status *status)

Two functions for converting FID to �lename or full path name are also provided.
Full path name is at the �lesystem's disgression for hard-linked �les.

int llapi fid2file(ll fid fid, char *filename);

int llapi fid2path(ll fid fid, char *pathname);

2.2.3 Feed I/O

The feed output data stream is presented as a FIFO �le (see mk�fo) under
$MNT/.lustre/feed/<feedname>. A feed may be open(2)ed by only a single
reader at a time. Feed entries are retrieved using read(2) on the �le. Reads will
block until new entries are available, or poll(2) or select(2) may be used.

Feed entries are removed from the feed according to the following policy:

The �le descriptor will make available only full feed entry records. With each
read(2) (or close(2)) of the fd, all of the entries from the previous read(2) are
marked as consumed. For example: read1 reads fe seq 1-5, nothing is marked
consumed; read2 reads fe seq 6-7, seq 1-5 are marked consumed; close1, seq 6-7
are marked consumed.

Upon recovery, we restart the feed from the �rst unconsumed entry. The feed
consumers are responsible for skipping any replayed feed entries they may have
already processed (identi�ed by repeated fe seq).

5

2.2.4 Feed entry ordering

For consumers combining the data from multiple feeds (e.g. database), partial
ordering of operations is required. Since clients synchronize the epoch among
servers for sequential transactions, using the epoch is su�cient to order \before
relations", while unrelated transactions may be reported in a random order.
Distributed transactions are linked via a common cookie contained in all a�ected
changelogs and reported in all a�ected feeds. Consumers are reponsible for
linking/ignoring distributed transaction entries internally.

6

