
Lustre HSM HLD

J-Ch. Lafoucriere, A. Degrémont

22th January 2008

Contents

I Coordinator 5
1 De�nitions 5
2 New entities 5
3 Functional Speci�cations 5

3.1 External copyout . 5
3.2 External copyin . 6
3.3 External remove . 6
3.4 Internal duplicate . 6
3.5 Cancel migration . 7
3.6 Migration list . 7
3.7 External storage administration 7

3.7.1 Add a new external storage reference 8
3.7.2 Destroy an external storage reference 8
3.7.3 List the de�ned external storage references 8

3.8 Migration administration . 8
3.8.1 Manually copy-out a �le 8
3.8.2 Manually copy-in a �le . 9
3.8.3 Manually purge �le copies 9
3.8.4 List current migrations 9
3.8.5 List current copies . 9

4 Use Case Scenarios 10
4.1 Archiving a not-recently-accessed �le 10
4.2 Restoring a punch �le . 10
4.3 Cleaning the external storage after a Lustre �le has been deleted. 10
4.4 A write I/O cancels an undergoing migration 11
4.5 An administrator wants details on current migrations 11
4.6 Declare a new external storage 11

1

5 Logic Speci�cations 12
5.1 External storage list . 12
5.2 Agent list . 12
5.3 Coordinator implementation . 12

6 State management 12
6.1 Scalability . 12
6.2 Recovery . 12
6.3 Disk format changes . 12

II Agent 14
1 Functional Speci�cations 14

1.1 External copyout . 14
1.2 External copyin . 14
1.3 External remove . 15
1.4 Internal duplicate . 15
1.5 Data availability . 15
1.6 Migration cancel . 16
1.7 External storage association . 16

2 Use Case Scenarios 16
2.1 An agent starts and registers . 16
2.2 An agent is requested to copy out a Lustre object 16
2.3 An agent is requested to copy in an external object in its Lustre

object . 17
2.4 An agent is requested to cancel its current work 17

3 Logic Speci�cations 17
3.1 Migration cancel . 17

4 State Machine Design 17
4.1 Scalability . 17
4.2 Recovery . 18

III Archiving tool 19
1 Functional Speci�cations 19

1.1 Copyout . 19
1.2 Copyin . 20
1.3 Remove . 20
1.4 Cancel . 21

2

2 Use Case Scenarios 21
2.1 Archiving one Lustre �le . 21
2.2 Restoring one Lustre �le . 21
2.3 Archiving several Lustre �les . 22
2.4 Restoring several Lustre �les . 23

IV Data purging 25
1 De�nitions 25
2 Functional Speci�cations 25

2.1 Data Purge . 25
2.2 Purge range information . 26

3 Use Case Scenarios 26
3.1 Lustre detects access on a purge area 26
3.2 Space Manager needs to make room 26
3.3 User wants to know whether his �le data are available 27

4 Logic Speci�cations 27
4.1 Data purge . 27
4.2 Purge area management . 27

5 State Management 28
5.1 Disk format changes . 28

V Initiating 29
1 Functional Speci�cations 29

1.1 Classical data access . 29
1.2 Transparent data access . 29

2 Use Case Scenarios 29
2.1 A purge �le is read and it triggers its staging 29
2.2 A copy tool uses transparent access to bring back data 29

3

Architecture
This document follows the architecture documents available on Lustre Arch
Wiki at the following URL:
HSM Migration http://arch.lustre.org/index.php?title=HSM_Migration
Space Manager http://arch.lustre.org/index.php?title=Space_Manager

4

Part I

Coordinator

1 De�nitions
explicit administrative request Request send to the coordinator by a user

or an administrator.
implicit/automatic request Request send to the coordinator by an auto-

matic system, implicitly. This will be done mainly due to I/O accesses.

2 New entities
• External storage
Each external storage Lustre will work with will be describe in Lustre in a
speci�c entity. This entity will be composed of a speci�c unique identi�er
and a related copy tool and external objects.

• External object
A external object describes data stored on an external storage and acces-
sible with a speci�c identi�er. Using this identi�er Lustre will be able to
read and remove this data when needed. All those objects are linked to a
Lustre object.

3 Functional Speci�cations
The coordinator manages the migration requests and the external storages.

3.1 External copyout
This function requests that one speci�ed Lustre object will be copied from Lustre
to an external storage.

• Input elements:
Lustre object reference Lustre unique reference to this object inde-

pendently of its various versions.
Lustre object version Version number of this object that will be copied.

The tool can use this value to optimise the data storage if the external
storage supports versioning.

External storage reference A identi�er to the external storage the caller
wants the data be copied to.

Mode Indicates whether this request is an explicit administrative request
or not.

5

3.2 External copyin
This function requests that one speci�ed external object should be copy from
its external storage, into Lustre, to its associated Lustre object on a speci�c
range.

• Input elements:
Lustre object reference Lustre unique reference to this object inde-

pendently of its various versions.
Lustre object version Version number of this object that will be copied.
External object A reference to the Lustre object copy store in an ex-

ternal storage.
Range Contiguous range of data to be copied in.
Mode Indicates whether this request is an explicit administrative request

or not.

3.3 External remove
The speci�ed external object will be deleted from its external storage.

• Input elements:
Lustre object reference Lustre unique reference to this object inde-

pendently of its various versions.
Lustre object version Lustre object version number corresponding to

the external object to be removed.
External object A reference to the Lustre object copy to be removed.
Mode Indicates whether this request is an explicit administrative request

or not.

3.4 Internal duplicate
The function requests an internal Lustre source object to be copied to another
internal Lustre object.

• Input elements:
Source The source object that will be copied.
Destination The destination object where the data will be put.
Flags Generic value in order to alter the function behaviour.
Mode Indicates whether this request is an explicit administrative request

or not.

6

3.5 Cancel migration
Cancels all undergoing requests related to a Lustre object. The current migra-
tion will be aborted as soon as possible. As the data copy is not transactional,
all the already done work will not be cancelled. The caller should deal with
this. An explicit administrative request could only be cancelled by another
administrative request.

• Input elements:
Lustre object Lustre unique reference to this object independently of

its various versions.
Mode Indicates whether this request is an explicit administrative request

or not.

3.6 Migration list
Returns a migration list starting from a speci�c rank and with a limited number
or entries. Each entry will describe a migration with several information like
the related Lustre object, the migration status and progress.

To get the full migration list, you need to call this function several times,
updating the starting rank between each, using the last rank you have received
the previous call. Iteration is �nished when less migrations were returned than
the required numbers.

• Input elements:
Start rank The smaller migration ID which will be returned.
Number of elements The max number of migration state to returned,

starting from start rank.
• Output elements:
Lustre object The Lustre object the migration is presently copying in

or out.
External storage A reference to the external storage used by this mi-

gration.
Progress The copy progress.
Status The last known state of the migration.

3.7 External storage administration
The coordinator will need to manage and store various external storage descrip-
tions. For each of them, it will store their identi�er, their copy tool and made
this information available to every component which will need it, like the agents.

Thanks to a Lustre tool, the administrator will be able to:

7

3.7.1 Add a new external storage reference
This action de�nes a new external storage reference which could be later used
by an agent.

• Input elements:
Label User de�ned unique identi�er for this external storage.
Copy tool path Command line to a user-space tool which can interact

with the external storage.

3.7.2 Destroy an external storage reference
This action will delete the declaration of an external storage identifying it with
its de�ned label. The external objects referencing this external storage should
be handled carefully.

• Input element:
Label User de�ned unique identifying this external storage.

3.7.3 List the de�ned external storage references
This action will return a tuple for each de�ned external storage.

• Output elements:
Label User de�ned unique identi�er for an external storage.
Copy tool path Command line to a user-space tool which can interact

with the external storage.

3.8 Migration administration
New commands will be added to a user tool to manage migrations. These
commands will provoke explicit administrative requests to the coordinator. Ad-
ministrators and users could used those commands.

3.8.1 Manually copy-out a �le
This action requires explicitly that a Lustre �le should be copied to a de�ned
external storage.

• Input elements:
File path Local path to the �le to copy out.
External storage reference External storage label which will store the

�le data. This reference could be optional if the coordinator can
guess it using policy or con�guration.

8

3.8.2 Manually copy-in a �le
This action requires explicitly that a speci�c version of a �le, previously copied
out should be bring back into the �lesystem, �lling a purge �le or replacing it.

• Input elements:
File path Local path to the �le to copy in.
File version Version available in an external storage. If this version is

not precised, the last copied out version is used.

3.8.3 Manually purge �le copies
This action requires that an identi�ed �le version copied out should be removed
from the external storage.

• Input elements:
File path Local path to the �le to purge a copy.
File version Version available in an external storage to purge. If this

version is not precised, the last copied out version is removed.

3.8.4 List current migrations
List all the undergoing migrations and their details.

• Output elements:
Lustre reference A path to the �le currently under migration or an

Lustre ID is no path is available.
External source/destination A reference to an external storage or ex-

ternal object.
Status The error status or the migration progress.

3.8.5 List current copies
This action displays all the available copied out versions of a speci�ed Lustre
�le.

• Input elements:
File path Local path to the �le the user is interested in.

• Output elements:
Version Version of the Lustre object.
Date Date and time the object had when it was copied out.
Size Size the object had when it was copied out.
External object reference Reference describing the external object which

owns the data.

9

4 Use Case Scenarios

4.1 Archiving a not-recently-accessed �le
1. A Lustre component, like the Space Manager, requests the coordinator to

copy out a speci�c Lustre �le to a speci�c external storage.
2. The coordinator checks its internal records for an existing migration for

this �le and if needed starts a migration on an agent.
3. The request source can requires the migration current status to the coor-

dinator if needed.
4. The coordinator stores the external object references to be able to restore

this �le later.
5. As soon as the migration is completed, the coordinator sends an acknowl-

edgement to the request source.

4.2 Restoring a punch �le
1. A Lustre component, like the an MDT or OST, sends a request to bring

back a punch �le to the coordinator.
2. The coordinator looks for the external copies of this Lustre �le and starts

the copy of the latest one on an agent.
3. When the copy is �nished, the coordinator warns the request initiator of

this completion.

4.3 Cleaning the external storage after a Lustre �le has
been deleted.

1. A user removes a Lustre �le, all its references on MDTs and OSTs are
purged. The reference to external objects are also removed. For each of
those references, a request is send to the coordinator.

2. The coordinator receives a removal request for an external object and its
corresponding speci�c Lustre object and version.

3. It starts a removal request on an agent for this external object. This
removal is asynchronous.

4. When the removal is done, the request initiator is warned.
5. All the last references to those external objects could be cleaned.

10

4.4 A write I/O cancels an undergoing migration
1. The Space Manager initiates an automatic copy-out request for a Lustre

�le to the coordinator.
2. The coordinator starts the transfer on an agent.
3. The �le content is read and the copy is undergoing, when a write request

is received by an OST.
4. As this �le is currently under migration, the OST requests to the coordi-

nator to abort the migrations for this �le.
5. As this migration was started by an automatic request, it could be can-

celled by the OST trigger. The coordinator asks its agent to cancel the
migration.

6. The migration is aborted, the coordinator acknowledge it to the OST.
7. The OST processes the I/O request.

4.5 An administrator wants details on current migrations
1. An administrator uses a user-space tool to list the undergoing migrations.
2. The tool asks the coordinator for a �rst list a migrations.
3. The coordinator returns a migration information list as required.
4. The tool asks the coordinator for a second list of migrations to complete

the �rst one it has received.
5. The coordinator returns a second migration list. But this list is smaller

than required because there is not so many migration presently.
6. The tool receives the second list, notices it has less results than required,

and concludes they are the last current migrations.
7. The tool displays the information for all �le migrations.

4.6 Declare a new external storage
1. An administrator uses the user-space tool to declare a new storage. It

indicates the label it want for it and the path to the associated copy tool.
2. These informations are sent to the MGS which stores them in a speci�c

log.
3. This log is sent to all its reader like the coordinator.
4. The coordinator updates its storage list.

11

5 Logic Speci�cations

5.1 External storage list
The external storage list will be stored in speci�c journal. This journal will be
available on the MGS. Each external storage declaration and con�guration will
be stored in a journal record. This journal will be used by the coordinator to
rebuild its internal list at start.

5.2 Agent list
Each agent, when started will announce itself to the coordinator. The coordina-
tor will store in its internal log and into the MGS a record list indicating the
agent list and their external storages. This log will be read by the coordinator to
contact the agent and by the agent to know if they need to register themselves
to the coordinator.

5.3 Coordinator implementation
The coordinator will be implemented as a classical Lustre RPC server imple-
menting a new API set which will be used by the MDT, OST and the Space
Manager. It will store the migration information in a local log saved in a dedi-
cated storage device. This ables the coordinator to have failover nodes, like an
OST.

6 State management

6.1 Scalability
The coordinator should scale up to 100,000 simultaneous migrations.

6.2 Recovery
The coordinator will use a dedicated storage device to save its internal record
describing all current migrations in order to being able, when re-reading this
journal to resume all migrations. Another node starting a coordinator should
be able to read this device and replace a failing coordinator, with a failover
mechanism.

6.3 Disk format changes
Lustre object copies Each Lustre object could have several copies of its data
in di�erent external storage. For each copy it will stored, on disk:

• The external storage reference.
• The external object reference on it.

12

• The Lustre object mtime when the object was copied out.
• The Lustre object size when the object was copied out.

13

Part II

Agent

Agents are Lustre components which reside on clients. They are responsible for
spawning archiving tools when the coordinator requests it. Thanks to this tool,
it moves data internally or externally of Lustre, manages several data movement
in the same time, follows their progress and cancels them.

1 Functional Speci�cations

1.1 External copyout
A call which requests that one Lustre object speci�ed will be copied from Lustre
to an external storage.

• Input elements:
Migration reference A migration identi�er which should be used by the

agent to identify this migration.
Lustre object reference Lustre unique reference to this object inde-

pendently of its various versions.
Lustre object version Version number of this object that will be copied.

The tool can use this value to optimise the data storage if the HSM
supports versioning.

1.2 External copyin
A call which requests that one speci�ed external object should be copied from
its external storage into its associated Lustre object.

• Input elements:
Migration reference A migration identi�er which should be used by the

agent to identify this migration.
Lustre object reference Lustre unique reference to this object inde-

pendently of its various versions.
Lustre object version Version number of this object that will be copied.
External object A reference to the Lustre object copy store in an ex-

ternal storage.
Range Contiguous range of data to be copied in.

14

1.3 External remove
A call which requests that the speci�ed external object will be deleted from its
external storage.

• Input elements:
Migration reference A migration identi�er which should be used by the

agent to identify this migration.
Lustre object reference Lustre unique reference to this object inde-

pendently of its various versions.
Lustre object version Version number of this object that have been

copied.
External object A reference to the Lustre object copy to be removed.

1.4 Internal duplicate
A call which requests that the agent copy data from a internal Lustre source
object to a internal other Lustre object.

• Input elements:
Migration reference A migration identi�er which should be used by the

agent to identify this migration.
Source The source object that will be copied.
Destination The destination object where the data will be put.
Flags Generic value in order to alter the function behaviour.

1.5 Data availability
A call which asks the agent to acknowledge that a speci�ed data range have
been totally copied for a particular migration. This call replies to the caller
when the data is totally copied or if an error occurred.

• Input elements:
Migration reference The migration identi�er which was speci�ed when

the migration was requested.
Range The contiguous range data the caller is interested in.

• Output element:
Status Indicates if the data are copied or explains why this is not the

case.

15

1.6 Migration cancel
This call requests to the agent that it cancels the speci�ed migration, stopping
all the corresponding processes.

• Input element:
Migration reference The migration identi�er which was speci�ed when

the migration was requested.

1.7 External storage association
When the agent is started by the administrator command, it speci�es the ex-
ternal storage identi�er this agent deals with. This information is sent to the
MGS which will store it. The MGS will maintain in a journal the agent list and
the external storage the agents manage.

2 Use Case Scenarios

2.1 An agent starts and registers
1. The administrator mounts a client specifying he wants that this client

also starts an agent. It speci�es which external storage this agent will
communicate with.

2. The agent reads the agent list from the MGS and checks if it is declared
in it. If not, it registers itself to the MGS, indicating the external storage
label it will manage.

3. The agent also reads the external storage list from the MGS and get the
copy tool command associated with its external storage.

4. The agent is ready to handle migrations.

2.2 An agent is requested to copy out a Lustre object
1. An agent received a migration request from the coordinator to copy out a

Lustre object to the external storage this agent is connected to.
2. This agent spawns the copy tool de�ned for its external storage with the

needed parameters.
3. Using the information this process is periodically sending, the agent up-

dates its internal data for this processing.
4. The coordinator asks the agent for the availability of a speci�c data range.
5. The agent, using the information it knows on the requested migration,

replies as soon as it knows the corresponding data range has been copied.

16

2.3 An agent is requested to copy in an external object in
its Lustre object

1. An agent received a migration request from the coordinator to copy in a
external object into a Lustre object. This external object is stored into
the external storage this agent is connected to.

2. This agent spawns the copy tool de�ned for its external storage with the
needed parameters.

3. Using the information this process is periodically sending, the agent up-
dates its internal data for this processing.

4. The coordinator asks the agent for the availability of a speci�c data range.
5. The agent, using the information it has on the requested migration, replies

as soon as it knows the corresponding data range has been copied.

2.4 An agent is requested to cancel its current work
1. An agent is processing a migration request.
2. It receives a cancellation request for this migration.
3. It requires to the copy tool process to stop itself.
4. When a timeout is reached, if the process has not stopped, the agent kills

it.
5. It acknowledges the cancellation request to its initiator.

3 Logic Speci�cations

3.1 Migration cancel
The migration cancellation should stop the copy tool process which has been
previously spawned. The agent should be able to stop this process by any means.
To do so, it will do this in 3 steps at max:

• First, it signals the process to stop itself. The process can clean its con-
nection and quickly quit.

• Then, the agent waits for the process end during a speci�c timeout.
• At end, if the timeout is reached, the agent kills the process.

4 State Machine Design

4.1 Scalability
An agent should scale up to 1,000 migrations in the same time.

17

4.2 Recovery
When an agent crashes down, all the migration it was dealing with are lost and
it is the coordinator responsibility to initiates new migration requests to resume
or restart the transfer on other agents. The agent do not deal with this itself,
it has no recovery mechanism.

18

Part III

Archiving tool

The archiving tool is a userspace process associated with a HSM external storage
which moves data between Lustre and its external storage. It is intended to be
used by the agent to handle external copies.

1 Functional Speci�cations

1.1 Copyout
A list of tuples will be provided on input. They will be composed of a Lustre
ID, a version number and a �le path. For each tuple provided, the tool will
manage a copy out and return another tuple composed by a reference to the
corresponding input object, the external ID which was used, the status of the
copy and its progress. Those informations will be returned periodically to the
agent, updating the migration progress.

Optionally some hints could be provided to optimize the copy. Those infor-
mations are not mandatory and could be ignored by the tool.

• Input elements:
Object ID Lustre unique ID to this object independently of its various

versions.
Object Version Version number of this object that will be copied. The

tool can use this value to optimise the data storage if the HSM sup-
ports versioning.

Special path Path to open the Lustre corresponding object by FID which
will avoid triggering cache misses.

• Output elements:
Lustre ID An identi�er corresponding to one of the object provided on

input, composed by the Object ID and Object Version.
Status Returns the success or the error of the process.
Progress Information on the data copy progress.
External ID Identi�er used by the HSM to identify this object copy.

• Hints:
IO Size Preferred I/O size for �le copy.

19

1.2 Copyin
A list of tuples will be provided on input. They will be composed of the Lustre
object reference, an external ID, a �le path and a range. For each tuple provided,
the tool will manage a copy in and return another tuple composed by a reference
to the corresponding input object, the status of the copy and its progress.

• Input elements:
Lustre ID An identi�er corresponding to one of the object provided on

input, composed by the Object ID and Object Version
Special path Path to open the Lustre corresponding object by FID which

will avoid triggering cache misses.
External ID HSM reference returned by the tool when the �le was copied

out.
Range Range of data to be copied in. This could cover the whole �le or

only a part.
• Output elements:
Lustre ID An identi�er corresponding to one of the object provided on

input, composed by the Object ID and Object Version
Status Returns the success or the error of the process.
Progress Information on the data copy progress.

1.3 Remove
A list of couples of Lustre object reference and an external ID will be provided
on input. The tool will asked the external storage for the removal of the provided
IDs. For each ID provided, the tool will returns a couple of ID and status.

• Input elements:
Lustre ID An identi�er corresponding to one of the object provided on

input, composed by the Object ID and Object Version
External ID HSM reference returned by the tool when the �le was copied

out.
• Output elements:
Lustre ID An identi�er corresponding to one of the object provided on

input, composed by the Object ID and Object Version
Status Returns the success or the error of the process.

20

1.4 Cancel
The tool should be able to cancel is undergoing work when it will receive some
speci�c event like a signal. If this is not possible, it should not be problematic
for Lustre or any external component if the tool process is killed during its work.

2 Use Case Scenarios

2.1 Archiving one Lustre �le
One of the main use of this tool is to copy one speci�c Lustre object like a �le
to an external storage like a HSM.

1. A Lustre agent will spawn the archiving tool providing it the following
informations :

• An object id
• An object version
• A open-by-�d path

2. The tool will set up its connection with the external storage if needed.
3. The tool will open the �le using the provided path. This action prevents

the �lesystem from triggering cache misses.
4. The tool will read the Lustre �le and copy the data read to the external

storage. At regular intervals it will returns informations to the Lustre
component which has spawned it, indicating:

• The Lustre object it is currently copying, indicating the object id
and object version.

• The copy state of this object, the possible errors.
• The copy progression, like the data o�set and data length or a per-
centage.

5. At the end, the tool will close the Lustre object, clean its connection
and returns a last set of information like previously explained more the
external storage ID used.

2.2 Restoring one Lustre �le
The tool can be used to bring back a external entity, already known by Lustre
like having being previously copied out from Lustre.

1. A Lustre component will spawn the archiving tool providing it the follow-
ing informations:

21

• An object ID
• An object version
• A open-by-�d path
• An external ID

2. The tool will set up its connection with the external storage if needed.
3. The tool will open the �le using the provided path. This action prevents

the �lesystem from triggering cache misses.
4. The tool will copy the data from the external storage and write them in

the Lustre �le. At regular intervals it will returns informations to the
Lustre component which has spawned it, indicating:

• The Lustre object it is currently copying, indicating the object id
and object version.

• The copy state of this object, the possible errors.
• The copy progression, like the data o�set and data length.

5. When the copy is �nished, the tool will close the Lustre object, clean its
connection and returns a last set of information indicating the success of
this copy and a full progression.

2.3 Archiving several Lustre �les
Lustre can ask the tool to migrate a list of �les. It can use this information to
optimize the migration. Possibly grouping all the provided �les in one object in
the HSM.

1. A Lustre component will spawn the archiving tool providing it a list of
tuples. Each of this tuple will include the following informations :

• An object ID
• An object version
• A open-by-�d path

2. The tool will set up its connection with the external storage if needed.
3. The tool will open the �les using the provided paths. This action prevents

the �lesystem from triggering cache misses. The �les will be opened one
by one or all in the same time depending on the tool needs.

4. The tool will read the Lustre �le and copy the data read to the external
storage. At regular intervals it will returns informations to the Lustre
component which has spawned it, indicating:

22

• The Lustre object it is currently copying, indicating the object id
and object version.

• The copy state of this object, the possible errors.
• The copy progression, like the data o�set and data length or a per-
centage.

Information on di�erent �les could be mixed. The tool can parallelize
copies and send information for each them as soon as they are available.
For the last display of information of each �les, the external ID used will
be returned too.

5. When the copy is �nished, the tool will close the Lustre objects, clean its
connection and returns a last set of information for each �le indicating the
success of the copy and a full progression.

2.4 Restoring several Lustre �les
Lustre can ask the tool to bring back a list of �les. Those �les could be spread
in various HSM entities or the same one if the tool has grouped them during
copy out.

1. A Lustre component will spawn the archiving tool providing it a list of
tuples. Each of this tuple will include the following informations :

• An object ID
• An object version
• A open-by-�d path
• An external ID

2. The tool will set up its connection with the external storage if needed.
3. The tool will open the �les using the provided paths. This action prevents

the �lesystem from triggering cache misses. The �les will be opened one
by one or all in the same time depending on the tool needs.

4. The tool will copy the data from the external storage and write them in
the Lustre �les. At regular intervals it will returns informations to the
Lustre component which has spawned it, indicating:

• The Lustre object it is currently copying, indicating the object id
and object version.

• The copy state of this object, whether some errors occurred.
• The copy progression, like the data o�set and data length.

Information on di�erent �les could be mixed. The tool can parallelize
copies and send information for each them as soon as they are available.

23

When the copy is �nished, the tool will close the Lustre objects, clean its con-
nection and returns a last set of information for each �le indicating the success
of the copy and a full progression.

24

Part IV

Data purging

1 De�nitions
punch Remove a data window from a �le. The �le becomes spare.
purge Removes data from a �le without showing it to the user. Those data

are available on another storage device. All access to the purge part will
be trap and the data bring back before the access is processed.

purged window The range where the data have been removed and tagged as
purged.

2 Functional Speci�cations
The MDT and OST will be improved with new functions to manipulate their
object data.

A purge removes data from Lustre. They are considered being available in
another storage. Even if the data are removed, the object previously owning
them is still considered having the same size. From an external point of view,
no data have been removed. If data are read in this purged window, zeroes will
be returned or a cache-miss could be triggered to bring back the removed data.

Others purges could be done on an already-purged �le, but the new range
must be contiguous with the actual purged window. It should not have two
distinct purged windows.

2.1 Data Purge
This function will punch data on a speci�c range for a Lustre object.

• Input elements:
Lustre object Lustre unique reference to the object to be purged, inde-

pendently of its various versions.
Range The data window to purge. It could be an o�set and a length by

example.
Object index Index identifying a �le object to purge. If this index is

not precised, the purge is apply to the whole �le and will be split to
match several �le object.

25

2.2 Purge range information
Return the purged window of the speci�ed object. A 0-length range means the
object is not purged.

• Input element:
Lustre object Lustre unique reference to the object independently of its

various versions.
• Output element:
Range The purged range if it exists.

3 Use Case Scenarios

3.1 Lustre detects access on a purge area
1. A client initiates a read request to an OST.
2. The OST veri�es that this request does not overlap the purge area of this

object, reading the object purged window.
3. If yes, the OST can trigger some events, like a cache-miss.
4. If no, the request is process normally.

3.2 Space Manager needs to make room
An event was raised indicating that space will be missing soon and the space
manager decides to make room, purging candidates �les.

1. The space manager requests to the MDT, which manage the candidate
�le, to purge a �le on a de�ned range.

2. The MDT, reading the stripping information of this object, splits the
purge request in several purge requests on various OSTs.

3. Each concerned OST receives a purge request for an object it managed. It
will removes the corresponding data and note the range it has just punch
has been in fact purged. This will update its purged window.

4. The OSTs acknowledge the purge to the MDT.
5. The MDT updates its local purged area and replies to the request initiator.

26

3.3 User wants to know whether his �le data are available
1. Using a Lustre tool, a user requests informations on the �le data concern-

ing an optional migration.
2. The tool requests the data purge range to the MDT.
3. The tool checks whether this range is greater than 0.
4. If Yes, it displays to the user the �le is partially or totally purge.
5. If No, the �le is fully resident and could be accessed without trigerring

cache misses.

4 Logic Speci�cations

4.1 Data purge
A data purge is composed of two phases:

• The �rst one consists in punching a data window from the object.
• The second one is to store, for each object, the data window that has been
punched. This informs that this is not a simple sparse �le but in fact a
purged one.

It is important that those two modi�cations are done atomicly.

4.2 Purge area management
A purge could be apply to a �le or a �le object. All the purge requests are sent to
the MDT, even if they concern only a �le object. The MDT will propagate them
to the right OSTs. This able the MDT to maintain its local purged window.

The MDT purged window will start at the smallest purge o�set in the �le
objects and �nish at the highest purge o�set. This window could be describe as:
all data outsite the window are garantied being resident in Lustre. All the data
inside this window could possibly trigger a cache miss because the corresponding
OST object has been purged.

As a consequence, the MDT will:
1. Receive all the external purge requests
2. Analyze which OST objects are concerned
3. Propagate the needed purge request. The MDT is the only component

which send purge requests to OSTs
4. Update its local purged window as the OST acknowledges the requests

the MDT has initiated.

27

5 State Management

5.1 Disk format changes
Purged data window The purge data window will be stored for each Lustre
object, a OST object or a Lustre �le, as an extended attribute which will be
stored on-disk. It will be modi�ed for each purge and when data are brought
back.

28

Part V

Initiating

1 Functional Speci�cations
The OST data access will be modi�ed to be able to work in two modes. The
�rst one will handle classical I/O accesses and the second one will handle special
accesses uses by user-space migration components.

1.1 Classical data access
In classical mode, for each I/O done on a �le, the OST will verify that the
accessed data are present, that is to say they have not been purged before. If
data are present, the I/O is processed normally, if there not a migration request
is sent to the coordinator.

1.2 Transparent data access
In transparent mode, the client opens the �le specifying explicitly that this open
is special. All I/O done on a �le opened this way are processed directly without
raising migration request.

2 Use Case Scenarios

2.1 A purge �le is read and it triggers its staging
1. A client issues a read request to an OST on a purge part of a �le.
2. The OST notices this request is a classical one, no special �ag have been

set. It checks the read request does not overlap the purged window.
3. If it overlaps, the OST triggers a cache-miss, requests a copy-in migration

for this �le to the coordinator, waits for its completion and then processes
the request.

4. If not, the OST processes the request normally.

2.2 A copy tool uses transparent access to bring back data
1. The copy tool opened the �le using special access, especially made for

avoiding triggering cache-misses, to open the �le.
2. It starts writing the data into the �le.
3. The OST receives write request for this �le.

29

4. It notices the �le was opened in transparent access mode and so, does not
check the purged window.

5. The write request is processed normally.

30

