
Parallel File System Benchmarking Made Easy ∗†‡

DRAFT

Andrew Uselton

January 23, 2008

Abstract

This report presents the results of a series of I/O benchmark tests
on the Franklin Cray XT4 conducted on December 19th, 2008, by Katie
Antypas. There is an extended discussion of methodology as well as an
analysis of results and recommendations for further testing. This is an
early draft with several important sections missing or under development.

1 Introduction

If you want to know the performance of an application on a particular computer,
then just run that application on that computer and have a stopwatch handy.
With numerous details elided this is how the Supercomputing Top 500 List
benchmarks compute performace. The benchmark result is entirely concrete, in
that it makes no claims about how some other application might run on that or
some other system. Indeed, that is the central reason why the List is criticized.
Benchmarking a parallel application’s I/O performance to a parallel file system
is equally simple, and simple results from such bencharks are criticized for the
same reason. One may speculate that there are many more than twelve ways
to lie about it.

For a parallel file system benchmark to produce a more widely useful result
the benchmark, and its interpretation, require care. This report presents a
methodology for the development and interpretation of I/O benchmarks in the
context a parallel file system mounted on a cluster-based supercomputer.

A parallel file system mounted on a cluster is a complicated beast of many
parts. Before testing may begin it is important to have a clear understanding of
all the individual components in the system and how they are connected. This
includes at least the cluster and server nodes, the cluster and server networks,
and the disk devices. Determining how well the whole system performs begins

∗acuselton@lbl.gov
†LBL-xxxxxx
‡This work was performed under the auspices of the U.S. Department of Energy by Uni-

versity of California, Lawrence Berkeley National Laboratory under Contract X-xxxx-Xxx-xx.

1

with an a priori notion about how the components perform individually and
how those components will perform when taken all together. Then, a test can
establish if the performance meets the expectation. If the performance is as
expected one may be tempted to go no further. Performance below expectation
may initiate an investigation into how to tune things to get a better result,
or even to change the test to see if that improves the answer. One may hope
that performance well above expectation would result in an equally agressive
investigation.

Claim: Benchmarking in the absense of an a priori notion of ex-
pected performance is a meaningless exercise.

1.1 Why Benchmark?

“Benchmarking” is a method of testing a “system” inteded to foster an un-
derstanding of the system and to characterize its performance. Initially, the
system may be a poorly characterized collection of components. It is impor-
tant to establish, from the start, a realistic and predictive model of the system.
Thus early tests focus on individual components and how they interoperate.
A model of the system is built up incrementally as the model becomes better
able to predict the results of tests. An increasing understanding of how the
system works may provide feedback to the system’s engineers, as the system is
debugged, modified, and tuned to improve the measured performance. A well
tuned and debugged system with a detailed performance model provides a sound
basis for predicting the I/O performance of a given application. Equipped with
that analysis a user of the application has a reasonable expectation of its actual
performance. Conversely, the application designer has the option of modifying
the application to optimize its I/O performance for that system.

Parameter space is infinite and testing time is finite. Parameter space can
only be sampled, and one is forced to make assumptions about both interpolated
and extrapolated values over the parameter space. Those assumptions, along
with issues of sampling error, lead to uncertainty about the meaning of any
one test sample. Much of the behavior of the parallel file system cannot be
predicted from first principles. Only after some tests have been conducted will
testers know what further tests are required.

Claim: The benchmarking evaluation of a computer system is an
iterative process

It is usually necessary to test the parts in order to esatablish expectations
about the whole.

Claim: The task of benchmarking the components individually is
the same as the task of benchmarking the whole.

Claim: Parameter space is of high dimension.

2

Figure 1: Simple model

2 Methodology: A Simple Beginning

A parallel file system mounted on a cluster is an endlessly complicated system.
The task of benchmarking it is equally complicated. As a starting point, and
as a way of developing the methodology that will be used throughout this re-
port, this section dispenses with every complexity, making the benchmarking
task as simple as possible, but no simpler. Subsequent sections will introduce
complexities as needed to solve problems encountered with the simple model.

In this section a system, described in the simplest terms, leads to model that
can be compared against the results from a correspondingly simple test.

2.1 Model

The simplest possible I/O model characterizes the system as a compute sub-
sytem, a storage subsystem, and an I/O channel connecting them (Figure 1). In
a generic test, a POSIX compliant write (or read) operation on a buffer of B
bytes in the compute subsystem transfers the contents of that buffer to (respec-
tively from) the storage subsytem. A test application notes the time immedi-
ately before (t0) and immediately after (t1) the I/O operation, and computes a
data rate R = B/(t1 − t0) measured in bytes per second.

2.2 Parameter Space

In this simple model there is one independent variable: the buffer size B. It
is reasonable to test the system for a variety of buffer sizes, so we make B a
parameter of the test. There is also one dependent variable for the test: the
communication cost given by the interval t1 − t0 (equivalently, the data rate R
calculated from it).

2.3 Expectations

When confronted with such a simple model the expected performance of the
system may come from an analysis of the memory bandwidth of the compute
subsystem, the reported speed of the disks in the storage subsytem, and the
bus or network speed for the channel connecting them. Memory generally has a
higher bandwidth than the network or disk and can be used to cache transmitted
data. The network is usually not going to buffer data. Some disks buffer data,
but this initial model will assume that data goes to the disk at a single uniform
rate.

3

2.4 Architecture and the Limiting Factor

For small values of B - smaller than the local I/O buffer cache - the memory
bandwidth will be the limiting factor determining the data rate, since the write
can be completed before the I/O channel and storage subsystem begin to re-
ceive data. For larger values of B the I/O channel bandwidth and/or storage
subsystem bandwidth will be the limiting factor. This section assumes the disk
speed is the limiting factor. The simplest model for this behavior employs a
discontinuous function like that in Equation 1.

R = [
1
M

+
1
N

u(B − b)]−1 (1)

where:

• R is the expected data rate (MB/s)

• B is the buffer size (MB)

• M is the data rate in the limit of small B (MB/s)

• N is the data rate in the limit of large B (MB/s)

• b is the buffer size at which the transition occurs (MB)

• u is the unit step function, which introduces the discontinuity at (B − b)

The expected data rate abruptly changes value at the critical point where
buffering can no longer take place, as depicted in Figure 2 in Section 2.7.

2.5 Testable Hypothesis

The expectation produced by the model and the analysis of the architecture
constitutes a testable hypothesis about the system. For values of B much smaller
than available memory cache b, the data rate R is expected to be about M -
the memory bandwidth - and for much larger values should be about N - the
speed of the disk.

2.6 Benchmark Application

The application used to test this hypothesis might resemble the following:

t1 = time(NULL);
write(fp, buffer, B);
t2 = time(NULL);
interval = t2 - t1;
if(interval > 0)
printf(‘‘R(\%ld) = \%f\n’’, B, B/interval);

The actual test used was only slightly more sophisticated to allow for sub-
second times and detailed error checking.

4

Figure 2: Comparing the model to the results of the simple test run on a laptop

2.7 Test Run

Running the test (on the author’s laptop) produces the results depicted as a
curve with error bars in Figure 2.

Note that on a i386 laptop it was not possible to measure for buffers larger
than 2GB. The expected behavior governed by Equation 1 is superimposed on
the results.

At this level of detail, the test may be said to have demonstrated that the
laptop memory badwidth is around 400MB/s and the drive subsytem around
50MB/s. These are the results of the benchmark.

2.8 Repeatability

The data points in Figure 2 are actually the averages of 10 runs of the test for
each choice of B. The error bars on the data represent the standard deviation
of those ten tests about each average. For large values of B the error is very
small and gives confidence in the fidelity of the test. For a few tests with low
B the error bars are very large. The tests were either subject to wide random
perterbations or there may be some other mechanism in play.

5

2.9 Analysis and Feedback

The measured data rates for small buffers appear to be highly variable, and the
large buffer rates appear to be slowly degrading rather than staying constant.
At the discontinuity, the data rate does not change abruptly. As the buffer size
increases there may be a resource contention issue that operates with increasing
probability rather than suddenly turning on.

A sigmoind function (Equation 2) is a convenient way to introduce the in-
creasing probability of resource contention into the simple model. The data rate
starts out in the range of typical memory bandwidth and then decends smoothly
to a data rate typical of disk speeds at about the point that memory would be
full.

R = N(1 + (exp((b−B)/τ)))/(1 + (N/M)(exp((b−B)/τ))) (2)

where:

• R is the expected data rate (MB/s)

• B is the buffer size (MB)

• M is the data rate in the limit of small B (MB/s)

• N is the data rate in the limit of large B (MB/s)

• b is the buffer size at which the transition occurs (MB)

• τ is the width of the transition region (MB)

Figure 3 superimposes a sigmoid on the data from Section 2.7. The values
for that sigmoid are:

• M = 400MB/s

• N = 50MB/s

• b = 512MB

• τ = 50MB

The correspondence between the data and the sigmoid give some justification
for the model.

On the other hand, the correspondence between the data and the sigmoid
is imperfect, especially at low buffer sizes. There may be value in refining both
the model and the understanding of the architecture in order to give a better
explanation and better fit to the data.

6

Figure 3: Matching a sigmoid to the data

2.9.1 Additional Testing

Benchmarking is an iterative process. The model does some things well and
other things poorly. Further testing is usually warranted. Follow up tests can
have any combination of these three goals:

• Test new regions of parameter space looking for new behaviors.

• Test familiar regions of parameter space to confirm previous observations
or validate results interpolated from them. This is especially useful if
something in the system has changed or is suspect.

• Test with a refined methodology, perhaps using a new tool or significant
change to the model.

In proposing follow-up tests it is important to identify the motivation and ex-
pected result for each such test. Section 2.10 adds a new dimmension to param-
eter space and new factor to the model. Interesting things result.

2.10 The First Complication: Transfer Size

Not reflected in the foregoing model is that the duration of a write system
call involves a fixed cost f (seconds) as well as the communications cost B/R.
For a large buffer the fixed cost can probably be neglected, and for a small

7

Figure 4: The effect of a fixed cost on data transfers

buffer the higher bandwidth prevaling may make the fixed cost unimportant
again. However, some applications do not have a single large write as their I/O
pattern. An identical I/O load made of multiple write calls may show different
behavior. This introduces a second independent variable, the transfer size s.

The results in Figure 3 suggest that when writing more than about B =
600MB the data rate rB will be near the disk subsystem speed. In a test
that writes the aggregate volume of data over many separate system calls of
size s bytes, the fixed cost of a system call will be significant when s is small
enough that f is comparable to the communication cost s/rB of one transfer.
Equation 3 gives the expected rate as a function of transfer size.

RB = rB(1 + rBf/s)−1 (3)

Where:

• RB is the expected data rate

• B is the aggregate amount written during the test

• rB is the measured data rate for a single buffer transfer of size B

• f is the fixed cost for a write system call

• s is the transfer size - there will be B/s of these

8

Figure 5: The distribution of data rates is bi-modal

For the system measured in the previous sections, with B = 2GB the measured
data rate was rB = 43MB/s. If the fixed cost were about 1µs then a transfer
size of 16 bytes would incur about a 50% performance penalty. Figure 4 su-
perimposes Equation 3 (f = 1µs, rB = 43MB/s, B = 2GB) on the results of
a test similar to the one in Section 2.6 except that writes are of s bytes each,
carried out in a loop for B/s system calls.

Note that the transfer size is shown on a log scale since all the action takes
place in a small fraction of the domain. Also note that the test rarely achieved
the expected 43MB/s from the previous testing. Figure 5 shows that the dis-
tribution of results over the course of the test was bi-modal.

Clearly, something interesting is happening on this laptop. If laptop per-
formance modeling were the subject of this report this would be a significant
point to pursue. In later sections, such anomalies in the results will become the
primary focus of testing.

2.11 Methodology: Not so Simple

This section has introduced the main themes of this report. Benchmarking re-
quires a model that can produce expectations about the results of a specific test
given an understanding of the architecture of the system. A benchmark appli-
cation produces results that are compared with the predictions of the model.
Initially, the model is expected to perform poorly, and the results of testing

9

Figure 6: A model of the cluster and its file system

guide the refinement of the model. Many parameters of the test may be var-
ied, and many different kinds of observations may be made. Testing is most
instructive when the results are at odds with the model.

3 The Cray XT4: A First Look

3.1 Model

The Cray XT/4 (named Franklin) at Lawrence Berkeley National Lboratory
has 9660 compute nodes (19,320 processors), 16 login nodes, and 25 I/O nodes,
connected together in a 3-D torus with the Cray Star network interconnect. The
I/O nodes provide Lustre parallel file system services to the cluster. Twenty-
four I/O nodes act as object storage servers (OSSs), and one I/O node acts as
a metadata server (MDS). The compute and login nodes mount two Lustre file
systems, /scratch and /home, provided by the servers. Four of the OSSs provide
/home and this report will not say much about that resource. Twenty OSSs
provide the /scratch file system, and on each of these servers there are four Lus-
tre object storage targets (OSTs), which mediate the access to the underlying
storage. Each OST presents a Logical Unit (LUN) of storage (a 4TB block de-
vice) from a Data Direct Networks (DDN) model 9500 RAID device. There are
five DDNs with 16 LUNs each (another DDN provides storage to /home), thus
the 80 OSTs front 80 LUNs. The Lustre file system has a unified namespace,

10

so a given file may be split amongst several OSTs - the default is four. Figure 6
gives a schematic of some of these details.

A row of equipment racks houses the storage resources for the cluster. A
DDN unit is identified by the rack in which it resides. Those are R2, R4, R6,
R8, R10, and R12 - other racks contain the actual RAID disks. There is also
another DDN unit that has not been connected up yet. The unit in rack R12
is for the /home file system.

The OSSs connect to the DDNs via 4Gb/s Fibre Channel (FC4) links through
two Cisco model DSC9513 switch frames (or just “switches”) in the rack at the
end of the row of DDNs. Each OSS has two FC4 links, both of which connect to
the same DS-X9112 switching module (or just “blade”) on a given switch. Each
DDN has eight FC4 links divided between two controllers - a couplet, in DDN
terminology. The four links from one controller go to the same blade on switch
SW1 (bottom) and the other four to switch SW2 (top). Thus a given blade of a
switch connects all four links from a particular DDN controller to the four links
from two OSSs1.

A couplet stacks its two controllers one above the other, labeled U1 (top) and
U2 (bottom). A controller organizes its four ports in a rectangular pattern with
labels Host-1 (top-left), Host-2 (bottom-left), Host-3 (top-right), and Host-4
(bottom-right).

The U1 controllers all connect to the switch labeled SW1, and the U2 con-
trollers to SW2. Each controller’s connections go to one blade of the correspond-
ing switch with the controller ports mapped to the switch ports as follows:

controller blade
Host-1 Port-3
Host-2 Port-9
Host-3 Port-6
Host-4 Port-12

The mapping from controllers to blades (numbered in a switch from the top
down) is:

couplet.controller switch.blade
R2.U1 SW1.B1
R2.U2 SW2.B1
R4.U1 SW1.B2
R4.U2 SW2.B2
R6.U1 SW1.B3
R6.U2 SW2.B3
R8.U1 SW1.B4
R8.U2 SW2.B4
R10.U1 SW1.B5
R10.U2 SW2.B5

1The intent to co-locate the FC4 links for the OSSs on the same blade as the FC4 links to
the DDN controllers for their respective LUNs is actually enforced in the DDN configuration.
Since the switches have high capacity crossbars connecting all the blades the mapping from
OSSs to LUNs could be arbitrary within the switch itself, possibly without much loss of
performance.

11

The XT4 divides the OSS nodes between two sides of the cluster (so the
machine could be “partitioned”, i.e. made into two separate systems). I/O
nodes on one side are all labeled with “(C0441)” and on the other side with
“(C0486)”. Some nodes have more than two ports, but all the I/O nodes have
two, labeled s0p1 and s1p1. Nodes in the XT4 cabinets are on modules also
called “blades”. Each blade of the XT4 with I/O nodes in it has two I/O nodes,
labeled b0 and b1. I/O blades are indexed by cabinet number c and module
m. Both I/O nodes of an I/O blade have FC4 links to the same blade on the
switch. The I/O blades and ports for the /scratch file system are:

I/O blade switch.blade
(C0441).c0m6 SW1.b1
(C0441).c0m7 SW1.b2
(C0441).c1m0 SW1.b3
(C0441).c1m1 SW1.b4
(C0441).c1m2 SW1.b5
(C0486).c0m5 SW2.b1
(C0486).c0m6 SW2.b2
(C0486).c0m7 SW2.b3
(C0486).c1m0 SW2.b4
(C0486).c1m1 SW2.b5

On an XT4 blade the four ports form a square with labels b1s1 (top-left),
b0s1 (bottom-left), b1s0 (top-right), b0s0 (bottom-right). The mapping from
XT4 blade ports to Cisco blade ports is:

I/O node blade
b0s0 Port-1
b0s1 Port-4
b1s0 Port-7
b1s1 Port-10

I was still trying to understand the above pattern when I first looked, so the
above may be incorrect. Furthermore, some of the connections did not appear
to be in the designated ports, though again I am unsure. I saw other I/O node
to switch connections as follows:

I/O node switch.blade(.port)
(C0441).c0m0b0s0 (gigE?) SMW.slot4.Port-C
(C0441).c0m0b0s1p1 SMW.slot4.Port-4
(C0441).c0m0b1s1p1 R1.FSW(qs0).Port-5
(C0441).c0m8b0s0p1 SW1.b5.Port-11
(C0441).c1m3 SW1.b3
(C0486).c1m2 SW2.b4
(C0486).c1m3b0s0p1 SW2.b5.Port-2
(C0486).c1m3b0s1p1 SW2.b5.Port-5
(C0486).c1m3b1s0p1 SW1.b4.Port-5
(C0486).c1m3b0s0p1 n/c

There are quite a few other connections, including some GigE connections,
that support the login nodes.

12

3.2 Parameter Space

In Section 2 the test parameters were the file size and the transfer size. On
a cluster with a parallel file system even the simplest test will involve several
more parameters, as follows:

Aggregate file size - summed over multiple tasks

Transfer size - of each system call

Tasks - in general, there will be multiple tasks, usually in a parallel application
employing the Message Passing Interface (MPI)

Nodes - compute nodes have two processors and usually have two tasks per
node, one per processor, but can also be constrained to 1 task or overcom-
mited to more than two tasks

Stripe count - the number of OSTs (equiv. LUNs) used for each file and for
the test as a whole, as well as the choice of mapping from files to OSTs

Stripe size - the granularity of placement of file sections on OSTs

I/O pattern - does each task have its own file or do all tasks access a single
file system object, or somewhere in between

API - POSIX, MPI-IO, HDF5, others

The initial benchmarking efforts reported here emphasized POSIX write system
calls with one file per task. The tests employed the default 1MB stripe size and
used default file system behavior in the selection of which OST recieived which
file. There are other characteristics of the file system and of the benchmarks
that could be explored, and some of them will be introduced in later sections
as the model becomes more detailed.

3.3 Expectations

The storage subsystem has three stages: the OSSs, the Fibre Channel network
and the DDNs. The disk consists of multiple independent units, which should
scale linearly, i.e. the expected performance is the number of units times the
expected performance from a single unit. Similarly, the network between the
OSSs and the disks has multiple units that should should scale linearly. Thirdly,
the OSSs operate independently and should provide an aggregate performance
that scales linearly. The cluster interterconnect is a torus, which will not scale
linearly, in general. Finally, the compute nodes are again independent and
should again scale linearly. As before, the I/O path must traverse all these
components in turn, so the slowest one in any given test will act as the limiting
factor. Which element is the limiting factor may be different for different choices
of test parameters.

The remainer of this section discusses the details of each component and its
contribution to the overall expected performance.

13

3.3.1 DDNs

The spec. sheet for DDN 9500s reports “streaming” read and write perfor-
mance of 3GB/s. DDNs have a small cache (a few GB) for each controller
and a limited capacity to aggregate and reorder writes to the individual RAID
chains. Small transfer size degrades performance, especially in a random work-
load where aggregation and reording are not possible. Anecdotal evidence of
their performance on a random I/O pattern for transfers above 1MB is about
2GB/s. The sixteen LUNs of a DDN compete for this bandwidth to give an
expectation of about 128MB/s per LUN to 192MB/s per LUN depending on
the load.

3.3.2 I/O network

Each of the five DDNs has eight FC4 links giving it a theoretical bandwidth of
4GB/s. This is balanced on the cluster by two FC4 links on each of the 20 OSSs.
Each OSS FC4 link is on the same blade of the Cisco switch with the FC4 link to
its corresponding DDN controller. There are four such pairings on each blade,
and the DS-X9112 modules’s data sheets say they can sustain full bandwidth
through all the ports at once. Since the I/O network appears to have higher
bandwidth than the DDN disk back-end, with no obvious contention issues, it
looks like it will not act as the limiting factor in the storage subsystem.

3.3.3 OSSs

Almost all of the I/O reordering and aggregation takes place in the OSSs, which
aggregate aggressively when possible and use standard elevator algorithms to
optimize back-end disk performance. The two FC4 interfaces need to be com-
pared to the bus on which they reside (a single PCI-X 66?) to see if the FC4
links can be kept “full”. The disk back-end is expected to handle 512MB/s on
its four LUNs assigned to the four OSTs on a given OSS, or perhaps a little
more for a very well-behaved load. The two FC4 links on the OSS have a theo-
retical bandwidth (together) of about 1GB/s, so at even “half full” the OSSs’
FC4 links would not be the limiting factor.

With small transfers and a random or fragmented I/O load the OSSs would
be expected to suffer performance issues as well. As the transfers become very
small the CPU load on request processing can become a limiting factor. The
Lustre file system attempts to enforce a 1MB Remote Procedure Call (RPC)
transfer size on communications between file system clients (compute nodes)
and servers (OSSs). If clients consistently send smaller RPCs the bandwidth
can suffer substantially.

The MDS doesn’t get mentioned much in the early part of the report. One
issue that does relate to the MDS is the mapping of files to OSTs. A file is
assigned to a number of OSTs determined by the file’s stripe count. By default,
a file will be assigned to be aportioned among four OSTs (stipe count = 4).
A starting OST is assigned by the MDS and then the remaining OSTs are
selected in sequential order. From one file to the next files are assigned to

14

OSTs in a round-robin sequence. There are also some mechanisms (depending
on the Lustre version) for load balancing and distributing starting OSTs more
randomly. The stipe count for a file can be set by the user via the lfs Lustre
utility. For most tests, especially at scale the stripe count will be set to 1, so a
particular file will always be entirely on a single LUN.

It is also useful to know that the OSTs are ordered such that they round-
robin accross the OSSs. Thus OSS 0 would host OSTs 0, 20, 40, and 60.

3.3.4 Interconnect

The Cray Star interconnect can provide way more than 1GB/s into the OSS,
though it would need to be compared to the rate available when that data moves
across the node from the star network to the PCI-X bus. Since the interconnect
itself is a torus it does not scale linearly with the nuber of connections. Some
anecdotal evidence suggests there can be traffic flow issues when data converges
on a single point in the torus, as it must when all 9660 compute nodes are
communicating with the 20 I/O nodes. Nevertheless, the interconnect, as a
whole, can provide a lot more data into the OSSs than they can push to disk. I
think.

3.3.5 Nodes

The compute nodes resemble the I/O nodes in having individually a very fast
connection to the interconnect. In a prallel I/O benchmark the nodes act in-
dependently except for coordinating MPI barriers. The amount that they can
source into the interconnect increases linearly with node count, and is generally
way in excess of the bisection bandwidth of the interconnect, much less the disk
back-end.

An MPI job of N tasks that will run with 2 tasks per node gets N/2 nodes
assigned essentially at random (the algorithm may be deterministic, I’ve yet
to have it explained to me). For values of N much smaller than 19, 320 the
nodes may be nowhere near each other, which would be good for the expected
performance if doing so avoided local contention within the interconnect. The
path data must travel from one given node to another is deterministic, I’m told,
so a poor choice of nodes could have them all lined up competing for the same
path into some specific OSS.

3.4 Architecture and the limiting factor

For a single task on a single compute node writing to a file mapped to a single
LUN behind a single OST, the test resembles the one in Section 2. Even a very
large file should appear to the OST as a streaming load. The expected data
rate would be about 192MB/s, in that case, if the disk back end is the limiting
factor. Similarly, two tasks on a single node would employ two files on (it may
be hoped) two LUNs behind two OSTs on separate OSSs. If the node can source

15

384MB/s, which it can, then the data rate should scale linearly from one to
two tasks.

As the number number of tasks increases, but is still small, the data rate
should continue to increase linearly, since more server, network, and disk re-
sources are being used. When the number of tasks is more than 20 all of the
OSSs should be involved in the test, and at 40 tasks each OSS should be man-
aging I/O to two OSTs. If there is any resource contention in the OSS the
data rate may not be twice at 40 tasks what is is at 20. The same goes for
approaching 60 tasks and 80. If all the OSSs can sustain I/O at full bandwidth
to all 4 LUNs each (they all still think they are sees a streaming load) the ag-
gregate data rate at 80 tasks would be 15, 360MB/s. All this assumes that the
disk back-end has been the limiting factor throughout, and that the files were
sensibly laid out in round-robin fashion.

As the number of tasks increases beyond 80 more compute nodes are com-
peting for the same limited bandwidth. The aggregate data rate would remain
flat. For 16k tasks (a typical “at scale” test size), with one file per task, there
will be 16k files distributed over 80 OSTs (LUNs). The OSTs should have a
little over 200 files each: 16 OSTs with 204 files each and 64 OSTs with 205
files each. This will look to the OSSs (and the DDNs) like a random load.
The 2GB/s that a DDN can deliver to a random load is divided among the 16
LUNs on the DDN to give 128MB/s per OST, as previously mentioned. The
aggregate data rate at scale is then expected to be about 10, 240MB/s.

3.5 Testable Hypothesis

The first test implied by the foregoing varies the number of tasks from 1 to
16, 384. The other parameters should introduce as little complexity as possible:

Aggregate file size - Large enough to prevent cache effects local to the com-
pute node, say 2GB

Transfer size - large enough to prevent fragmentation and fixed-cost issues,
say 4MB

Nodes - For counts from 1 to 80, step by 1 to explore details of the behavior
as OSSs become responsible for additional files. Beyond that, sample
parameter space in “powers of two” up to the full-sized test of 16, 384

Tasks - two per node (after the first test of 1 task)

Stripe count - set to 1 for all tests

Stripe size - dafault 1MB

I/O pattern - file-per-task

API - POSIX write system calls

16

Given the forgoing discussion the test results should lie along a curve that begins
linear in the number of tasks n, with R = n ∗ 192MB/s up to 80 tasks. Then it
should remain flat for a while until the load stops being streaming and becomes
random. This would be captured by a sigmoid descending from 15, 360MB/s
to 10, 240MB/s at about the point where the OSSs and/or the DDNs can no
longer reorder the writes. That should happen about when each OSS has no
more than one outstanding write per task (at a guess). With 8GB of memory,an
OSS can cache no more than 2k writes of size 4MB. I seem to recall that the
OSSs will actually limit the amount they are willing to cache, and that the
limit is a file system tunable. So there would be room for up to 500 outstanding
writes per LUN which is about twice as many as there are files that each OST
would host. It will be interesting to see if the streaming to random transition
occurs at all. Equation 4 has the transition take place at 4k tasks. There is no
theoretical motivation for that choice, it was chosen to exibit the shape of the
curve.

R(n)∣∣∣∣ B = 2GB
s = 4MB

=

n ∗ rS 1 ≤ n ≤ O
O ∗ rR

1+e
T−n

τ

1+
rR
rS

e
T−n

τ

O ≤ n ≤ 16k (4)

where:

• R is the expected data rate

• n is the number of tasks

• O is the number of OSTs: 80

• rS is the data rate achievable by a LUN under a streaming load: 192MB/s

• rR is the corresponding rate for a random load: 128MB/s

• T is the number of tasks necessary to make the load appear random: 4k

• τ is the width of the transition region: 1k

3.6 Benchmark Application

IOR is an MPI application widely used for parallel file system benchmarking. It
has features that allow for testing many different dimensions of the parallel file
system parameter space. For the purposes of a the basic test described above
it does the equivalent of the following:

MPI_Comm_rank(Com, &rank);
MPI_Comm_size(Com, &size);
MPI_Barrier(Com);
t1 = MPI_Wtime();
for(i = 0; i < B/s; i++) {

17

Figure 7: Initial testing does not quite fit the model

write(fp, buffer, s);
}
MPI_Barrier(Com);
t2 = MPI_Wtime();
local = t2 - t1;
MPI_Reduce(&local, &global, 1, MPI_DOUBLE, MPI_MAX, 0, Com);
if((rank == 0) && (global > 0))

printf("R(%d) = %f\n", size, size*B/global);

In particular, note that the slowest task determines the reported data rate for
the cluster as a whole. A later section will discuss an alternative measurement
strategy.

3.7 Test Run

The results from the December 19, 2007, test are in Figure 7 along with the
expected performance as given by Equation 4. Testing began by running IOR
with every task count from 1 to 64 (rather than 80, see label “phase I” in
Figure 8). That was followed by a few tests with the default stripe count set
to four (“phase II” in Figure 8), which are not represented in Figure 7 (see
Section 3.9.3). Then the scaling study continued for powers of two from 128 to
8192, and with stripe count set back to one (“phase III”). The test for 16384

18

Figure 8: Tracking performance over time on the OSTs

tasks had to be cancelled for lack of time. A few more, smaller tests (“pase IV”
- also not included in Figure 7) ran at the very end of the dedicated application
time.

In addition to test results produced by the IOR benchmark application the
individual OSTs were monitored, minute by minute, for their reported instan-
taneous data rates. Figure 8 plots the reported data rates, aggregated over all
80 OSTs, during the course of the testing (with label “ost”). Superimposed on
that plot is a test by test track of the data rate being reported out (at the end
of each test) by IOR (label “ior”). There was a four second quiecent period
between each test. For the first tests, in the linear scaling region, the tests
themselves were only about eight seconds long, thus the trace labeled “ior” in
Figure 8 overestimates the activity on the file system. Beyond the linear region,
where the tests took longer the decent to zero is included in the “ior” trace in
order to highlight test boundaries.

3.8 Repeatability

In Phase I each test ran three times. Figures 7 and 9 show the error bars, and
Figure 8 shows the highest of the three. In the interest of time larger tests were
only run once.

19

Figure 9: Adjustment of the model to the test data

3.9 Analysis and Feedback

Figure 7 demonstrates that testing does not support the model as initially pre-
sented. The values for the constants in the model were chosen based on initial
notions of expected component performance. If the model is to be salvaged
those constants need to be adjusted. The following values contribute to the
revised model depicted in Figure 9.

• O = 32

• rS = 128MB/s

• rR = 100MB/s

• T = 6144

• τ = 512

Of the adjusted values the streaming data rate for a single LUN is the best
justified. Over the first 20 tasks the match appears to be very good. It is
apparent that the OSTs do not scale linearly to all 80. The notion that there
is a transition from streaming to random load on the DDNs at about 6144
tasks is poorly supported. The one data point at 8192 tasks has an alternative
explanation. One aspect of that test, which shows up vividly in Figure 8, offers

20

Figure 10: Some tasks straggled in later than the rest

an alternative explanation for the drop in performance. Section 3.9.1 pursues
this point.

The file system is only getting full bandwidth up to about 32 OSTs, or about
1− 1/2 LUNs per OSS. It would seem that there is some other limiting factor,
as yet unexplained. There may be some resource contention at the OSS that
prevents the four OSTs from getting full bandwidth. Alternatively, there may
be a limiting factor elswere in the I/O path preventing the bandwidth from
exceeding about 4GB/s aggregate. Section 3.9.2 examines the region of linear
scaling more closely.

3.9.1 8192 Tasks

Figure 10 presents the portion of Figure 7 for the 8192 task IOR test. For about
the last 40% of the test the OSTs were slowly going idle. The poor performance
over that period results in a reported data rate 20% below what the other tests
reported.

Figure 11 traces each OST individually over the course of the test. Note
that some OSTs finish very early and others very late. Once most of the tasks
are complete a few OSTs are able to perform close the previously reported rate
of 128MB/s.

Figure 12 aggregates the rates over the four OSTs on each OSS for a similar
set of per-OSS traces. Now notice that no OSS finishes particularly early, but

21

Figure 11: Some OSTs do more work than others

Figure 12: No OSS finishes especially early

22

Figure 13: Allocation is quantized at around 30 files

several finish late. One OSS appears to have all four of its OSTs still going. Are
some OSSs not getting a fair share of the available bandwidth? The crowded
section of the test does not seem to have that much variation in the rates.

The area under the curve for a given OSS represents the amount of data that
OSS was responsible for delivering to the test as a whole. It looks like some
OSSs were having to do more work than others. Figure 13 reorganizes the data
from Figure 11 to show, for each OST, the average rate it observed and the time
it took to complete its assigned set of 100 or so files. Since all the files were the
same size the figure gives estimates for the the number of files each OST was
assigned:

f = t ∗ rave/B

where:

• f is the number of files assigned to the OST

• t is the time to completion for that OST

• rave is the average data rate observed for the OST

• B is the file size used during the test

23

Figure 14: Testing in the region of linear scaling

There are three lines and two isolated points in the figure. The points in a
line correspond to approximately the same number of files f , so there were five
different loads assigned to the OSTs as follows2:

files OSTs
35 1
62 5
92 66
124 1
156 7

It would appear that the MDS does not hand out files to OSTs individually,
but rather does so 30 files at a time. Furthermore, there does not appear to
be a strict round-robin alternation amongst the OSTs. Something interesting
is happening, the MDS appears to be responsible, and it is disrupting the I/O
pattern at scale. The low resolution of the OST monitoring data makes it diffi-
cult to determine if the effect is only at scale. The three large tests preceeding
the 8192 task test did not seem to be adversely affected.

24

3.9.2 The linear region

Figure 14 reproduces the portion of Figures 8 and 9 from the region of linear
scaling. The correspondence is very good between the observed rates and the
expected value of n ∗ 128MB/s up to around 20 tasks. For the tests with 21 up
to 40 tasks it looks like the general trend is much more noisy. The second OST
per OSS only contributes an extra 73MB/s each. By 60 tasks the third OST
per OSS has only contributed about 12MB/s each. Similarly, the fourth OST
per OSS only adds another 12MB/s each (based on 128 tasks, since we did not
test at 80 tasks). Based on the analysis in Section 3.9.1 the whole notion that
testing in the linear region is adding one more OST in each test from 1 to 80 is
in question. The fact that it seems to be borne out in the region from 1 to 20
tasks is suspicious, though. It is possible to contrive a test that definitely has
all files distributed uniformly in a round-robin fashion. It might be worthwhile
to do so.

The saw-ridge shape of the test results may be explained as follows: IOR
calculates the reported data rate by dividing the aggregate amount of data
transferred by the interval from before the start of testing to end of the last
test to complete. Thus if one task is especially slow it can unduely influence
the aggregate rate. If there is some resource contention between two OSTs on
an OSS then at 21 tasks there will one OSS that is apparently slower than
the rest. From the observations above it looks like two OSTs sharing an OSS
get about 100MB/s each instead of 128MB/s. The testing interval would be
10.24s = 1024MB/(100MB/s). In that case IOR would report:

r21 = 21 ∗ 1024MB/10.24s

Or about 2100MB/s rather than the 2688MB/s expected by linear scaling.
In fact, the 21 task test got closer to 2400MB/s. A test of 41 tasks expe-
riences the same penalty compared to 40 tasks. The observed drop is about
10%, though the forgoing analysis would predict closer to 30%. Whatever is
happening appears to be rather complicated. Follow-up tests should remove all
uncertanty from the mapping of files to OSTs. An explanation for the lack of
scaling in the linear region may also reveal why the peak performance at scale
is below expectation.

3.9.3 Additional Tests

Additional tests during the same period showed some other interesting results.

• Stripe Count Four

3.9.4 Recommendations

We want to characterize the impact of the non-uniform file distribution. To do
that, run one test at scale with uniformly distibuted files. Verify that OSTs

2The total of all the files in the table is about 6% fewer than the number of files that were
actually in the test, so the results are only approximate.

25

and OSSs receive a fair distribution of the available bandwidth. This should be
at 8192 tasks, since that is the test we have to compare against. A similarly
constructed test at 16384 tasks might be revealing. If we can sample more
frequently the shorter tests would be useful to verify that the effect is only
noticable at scale.

What is the limit that one task (one node) can produce. For one and two
tasks, run a sequence of tests at increasing stripe count.

We want to understand what the limiting factor is in scaling up to 80 OSTs.
Examine the maximum possible performance of a single LUN. On a quiecent

system can we get full bandwidth from a single OST on a single OSS? Run a
series of tests from increasing numbers of nodes, but all writing to files mapped
to a single LUN. Does the performance actually exceed the previously observed
128MB/s for some loads?

Similarly, run the four OSTs of a single OSS with increasing loads to see if
it will deliver full bandwidth to all four. Will it for all 20 OSSs?

We want to characterize the maximum possible performance of a single DDN.
Using from 1 to 16 files distributed over the LUNs of a single DDN examine the
performance curve. What about 2 files per LUN, and so forth?

Can we find pairs of OSSs that, when fully loaded, appear to interfere with
each other? Does it depend on which pairs? Exactly what combinations of fully
loaded OSSs are able to saturate the available resources? Do the LUNs of a
DDN compete for back-end disk bandwidth? How loaded does a DDN have to
be before the limitting factor is on the OSS side rather than the DDN side?

• Preserve files after each test long enough to generate a report on the
mapping of files to OSTs.

• Conversely, run a similar series of tests with files in a known even distri-
bution accross OSTs.

• Sample the OSTs more frequently.

• Monitor OSS CPU utilization

• Monitor the iostats across the two FC4 links

• Monitor RPC size

• Use mib to generate client-side performance profiles.

4 Data Management

Benchmarking is a data intensive activity. It is important to organize the
recorded information from each test in such a way that it is preserved and
searchable.

The following items need to be recorded in a benchmark:

hardware - versions, configuration, and tuning details

26

computer system software - versions, configuration, and tuning details

file system software - versions, configuration, and tuning details

test application - versions, configuration, and tuning details

test parameters - the set of variables and range of values chosen

test results - the observed quantities and the values for each test

environmental considerations - Is the system otherwise quiescent?

5 Related Work

6 Conclusion

7 Acknowledgments

27

