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1 Introduction

Write-back cache is a client and server mechanism for caching meta-data oper-
ations in a manner similar to already existing cache for data operations (i.e., a
client page cache). Perceived advantages of write-back cache are:

` more efficient network usage, due to the batched transfer of meta-data
operations;

` higher degree of concurrency on the client;
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` an ability, given suitable locking mechanism (e.g., sub-tree locking), for
client to operate without communicating to the server (including discon-
nected mode);

` more efficient operations execution on the server.

Refer to the architecture page listed in the References section for the additional
information.

2 Definitions

(MD)WBC (Meta-data) Write-Back Cache

MD operation A meta-data operation performed on a client (create, unlink,
rename, etc.).

State update An effect of an MD operation on a particular file system object.
Single operation can update state of multiple objects (e.g., link updates
state of a directory, where name is added to, and of an object to which
new link is added). Cached state update is also referred to as a cache
element.

MD batch A group of MD state updates performed by a client such that:

` the batch as a whole transforms the file system from one consistent
state to another,

` no other client depends on seeing the file system in any state where
some, but not all of the MD operations in the batch are in effect.

reintegration The process of applying an MD batch on a server. Reintegration
executes all the MD operations in the batch and changes the file system
from one consistent state to another.

dependency A situation in which an MD operation modifies multiple sepa-
rate pieces of client state that are otherwise not related. These dependent
pieces of state have to be reintegrated atomically (in the data-base ACID
sense). For example:

` link and unlink introduce a dependency between the directory where
the entry is added or removed, and the target object whose nlink
count is updated.

` cross-directory rename makes the parent directories dependent.

` unlinking the last name of a file introduces a dependency between
the file inode and the inodes of its stripe objects that are to be de-
stroyed.
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3 REQUIREMENTS

Note that to make efficient implementation possible it is not required for Q! review me
dependencies to constitute a partial order. E.g., it is possible to have cy-
cles of dependencies, because client is only interested in finding epoch
boundaries, and not in the ordering of state updates within a single given
epoch.

coordinated reintegration A special case of reintegration that occurs when the
client cache contains dependent state pertaining to multiple servers. In
this case the servers have to act in concert to guarantee consistency. Co-
ordinated reintegration is originated by the client, that sends dependent
batches to the servers in parallel. Global file system consistency is main-
tained through use of epochs, which are described in another set of design
specification, see [3], and Epoch HLD/DLD (forthcoming).

object-of-conflict An object in the extent of the lock owned by a client and
also in the extent of some conflicting lock that other client is attempting
to acquire. I.e., an object where locks "intersect". Single pair of conflicting
locks can have more than one object-of-conflict. This term is used in QAS
description.

3 Requirements

The following list of requirements is taken from the WBC architecture page.

scalability client should be able to execute 32K creations of 1–64KB files per
second. Files maybe created in different directories with file counts per
directory to range from 1K to 100K.

correctness reintegration changes the file system from one globally consistent
state to another.

transactionality reintegration assures that the disk image of the file system
is consistent. This implies that reintegration is either done completely
within a single transaction, or the batch contains enough information to
cut reintegration into smaller pieces, each preserving consistency.

concurrency when a client surrenders a meta-data lock it only flushes enough
of its cache to guarantee correctness (i.e., flushing the whole meta-data
cache is not necessary).

3.1 Note

To keep the design manageable, this document tries to introduce as few exter-
nal dependencies as possible. Specifically, while WBC performance critically
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depends on the sub-tree locking, no details of the latter are discussed here.
Also, details of epochs implementation are, being the subject of another design
document (forthcoming), left out,

4 Functional specification

4.1 General

When a client is invoked to execute meta-data or data operation, it checks
whether WBC is applicable (see Conditions below). If it is, the client modifies
local VFS and VM objects to reflect effects of the operation, and adds an op-
eration record (see Caching sub-section below) to the cache. If WBC is not ap-
plicable, the client sends RPC to the server(s) involved (this might incur cache
write-out, see Write-back below).

4.2 Caching

The meta-data cache is organized as a collection of per-object logs. Here an ob-
ject is a file or a directory on which meta-data operation is performed, and a log
is a sequence of operation records, in the order of their execution history (this
is a well-defined order, as meta-data operations on a single object are serialized
by the VFS locks). An operation record R0 can be dependent on another opera-
tion record R1, (where usually, but not necessary, R0 and R1 belong to the logs
for the different objects), meaning that R1 has to be reintegrated not later than
R0 (see Batching below). In terms of epochs, it can be stated that operations
are dependent when they are part of the same epoch. Individual records and
their dependencies are tracked so that client is able to write-out only a portion
of its cache, while preserving file system integrity: if partial write-out is not
required, then consistency can be trivially guaranteed by always reintegrating
the whole cache. Partial cache write-out is necessary to:

` achieve low latency of the DLM lock cancellation, and

` have an ability to cache more meta-data operations than can be reinte-
grated in a single RPC. This is important, for example, for the meta-data
proxy server.

4.3 Conditions

WBC might not be applicable for a given operation due to a number of reasons:

` WBC is disabled by the administrator (e.g., because exhaustive audit is
required);
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` an amount of the cached state reached certain tunable threshold;

` a synchronous operation is requested by the user (sync, fsync, O_SYNC);

` an operation cannot be executed locally (e.g., client lacks necessary locks
on some of the objects involved in the operation) without communication
with the server, or client doesn’t have enough information to complete
operation locally;

` client runs out of a leased resource (fids, grants, locks, etc.). This is an
important special case of the previous situation.

4.4 Write-back

Cache write-back occurs when

` the client cannot proceed without contacting the server (see Conditions
above), or

` the cache contains operations older than some configurable age, or

` a lock protecting a part of the cache is invalidated either due to the arrival
of the blocking AST from the server, or due to the lock LRU policy, or

` write-back is explicitly requested by the user (e.g., umount, or prepara-
tions for going into disconnected mode).

Cache write-back starts with the construction of a batch (see Batching below).
The batch consists of per-server sub-batches, each targeted at the specific server
(mdt or ost). Each per-server sub-batch is a description of data and meta-data
updates that are to be effected on the target server. The batch is converted into
the ptlrpc format and transmitted to the servers as a set of RPCs.

Before transmission is started, client waits until the maximal RPC in flight lim-
itation is satisfied for all servers involved in the write-out. With the current
recovery design, the maximal number of RPCs in flight is necessary equal to 1.

Transmission of the sub-batch, followed by its execution on the server, and
possibly followed by the recovery is referred to as a reintegration. Either all or
none of the per-server sub-batches have to be reintegrated successfully. This is
achieved through the epoch mechanism.

4.5 Batching

Construction of a batch starts with a certain “root set” of cache elements. In the
case of age-based cache write-out, root set contains certain amount of oldest

6



5 USE CASES

elements in the cache; in the case of blocking AST root set consists of objects-
of-conflict, etc. The batch then is iteratively expanded until it is closed w.r.t. the
following properties:

` local sequentiality: together with any operation, the batch also contains
all preceding, not yet integrated, operations on the same object;

` dependency: together with any operation, the batch also contains all op-
erations (on this or other objects) dependent on a given operation. For a
definition of dependency, see Definitions section.

If resulting closure is too small to form an efficient RPC, more elements (se-
lected according to certain policy) are added to the batch and construction of
the closure repeats.

5 Use cases

The following list of use cases is taken from the WBC architecture page.

5.1 Sub-tree-operations

A client creates a new sub-directory and populates it with a large number of
small files (and sub-directories, recursively).

` when new directory is created, server grants the client a sub-tree lock for
it (subject to some server policy);

` creation of a new object F within the directory:

– client checks VFS permissions

– client selects an mds where F is to reside (using usual placement
policy);

– client checks that it is able to execute operation locally that it:

• has an unallocated fid in fid sequences;
• has enough inode grants from (maybe a part of the previous

check);
• has enough inode quota;
• can extent existing sub-tree lock to the F;

– once all checks above passed, client creates an inode and attaches it
to the dentry, created by VFS;
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– client maintaining per-mount-point operation counter (epoch num-
ber, in other terms) that is used to tag update-records;

– client creates update-records:

• a NAME_ADD record. It is appended to the per-directory op-
eration log;

• a FILE_CREATE record. It is appended to the per-inode opera-
tion log (necessary empty at that point);

There is a dependency from the NAME_ADD record to the FILE_CREATE
record (implemented as a pointer), guaranteeing that creation of the
file (i.e., of inode on the mds) is reintegrated not later than the inser-
tion of the name referring to this file.

` if one of the checks mentioned above fails due to the shortage of the
leased resources, or addition of a new state update record pushes cache
size to the limit (either global or per-object), synchronous cache write-out
takes place, following the description given in the Write-back sub-section:

– a root set is selected according to certain policy (e.g., selecting oldest
elements in the cache seems one possible reasonable policy);

– closure of the root set is built. Data structures, described below in
the Logic Specification section make this step efficient.

5.2 Sub-tree-conflict

A client C0 enters directory /DIR and populates it with a large number of files
(and sub-directories, recursively). Another client C1 obtains a conflicting lock
on /DIR.

` when new directory is created, server grants the client a sub-tree lock for
it (subject to some server policy);

` C0 then proceeds to create new files and sub-directories as described in
the previous use case;

` after some time C0 ends up with the following cached state:

– a number of ADD_NAME state update records attached to the top-
level directory;

– a number of inodes, representing newly created files. State-update
logs for these inodes contain at least FILE_CREATE records, but
may also create other records, e.g., for SETATTR, ADD_NLINK, etc.
There are dependency pointers between records in the object logs
and records in the logs of their parent directories;
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[Note: there is a certain degree of logical inconsistency in placing initial Q!
FILE_CREATE record into a per-file log, because the file and its log do not
exist at that point. Alternatively, FILE_CREATE records can be attached
to the global “per-device” log. This reflects the notion that file creation is
a global file system operation.]

– a number of osc-level data structures (struct lov_oinfo, or struct
osc_object in the new client code) representing stripe sub-objects
of newly created files. There is a per-object update log, containing
at least OBJECT_CREATE operation (see note above), possibly fol-
lowed by SETATTR and TRUNCATE records.

– a number of osc-level data structures (struct osc_async_page, or struct
osc_page in the new client code) representing pages with the cached
file data, attached to the osc objects. An implicit dependency pointer
between a cached data page and corresponding OBJECT_CREATE
record is assumed;

– a set of DLM locks protecting cached file data. These locks were
implicitly granted by the server together with fid sequence that it
allocated to this client at the connect time;

– capabilities? They are by definition not cacheable (for a long time). Q!
How to generate them locally?

– cached grants:

• disk space grants from OST, consumed by the dirty data pages;
• disk space grants from MDT, consumed by the directory entries;
• inode grants from OST, implicitly given out together with the

fid sequences;
• inode grants from MDT, implicitly given out together with the

fid sequences;
• OST quota
• MDT quota;

– all update records are tagged with an epoch number;

` all objects with non-empty logs are kept on some list hanging off mount-
point.

` C1 does GETATTR(/DIR) (e.g., as a part of “ls -l / ”). Supposing that
C1 is a non-WBC client, server acquires LCK_PRlock on /DIR on C1’s
behalf, sending blocking AST to C0.

` client can handle blocking AST for an STL in multiple ways. Let’s for
simplicity assume that the client decides to completely cancel STL lock
on /DIR , which implies write-out of all cached state protected by this
lock.
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` client forms a batch (as a collection of sub-batches, one for each server
involved):

– batch has to contain at least the modifications to objects that were
protected by the lock being cancelled. Client maintains lock<->object
mapping to find such objects efficiently;

– starting from such root set, batch is built as described in the Batching
section. Construction of the closure might require addition of up-
date records from logs other objects not protected by the lock being
cancelled. In such a situation, client is free to include only a part of
object’s update log in the batch.

The question of how much cached state has to be written out to cancel a meta- Q!
data lock is a subtle one. Consider a case, where client holds a PWlock (not nec-
essary a sub-tree lock) on directory /DIR , and a PWlock on directory /DIR/d0/d .
In seems plausible to assume that cancellation of lock on /DIR invalidates only
cached state associated with /DIR and shouldn’t cause write-out of cached up-
dates on /DIR/d0/d , but consider the following scenario

$ rm /DIR/d0/d/secret # destroy sensitive information
$ chmod a+rx /DIR # allow everyone to access sub-tree

If cancellation of /DIR lock at this point writes out only updates to /DIR (in-
cluding change of the permission bits), no immediate problem arise, as nobody
can access d yet without first canceling lock on it, and this cancellation will
cause write-out of cached updates, including removal of directory entry for
secret file. Potential problem arises if client crashes after writing out state
updates for /DIR , but with cached updates for d still in the cache: this creates
security hole. It can be noted that

` such situation is already possible in non-transactional file systems with
asynchronous meta-data updates, like ext2, where meta-data updates
reach the storage out of order, and crash can occur at any moment;

` also such situation is possible with UFS+softupdates—default FreeBSD
file system configuration;

` also such situation is possible with the file systems that allow multiple
concurrent transactions (e.g., NTFS, reiser4);

` generally speaking, the problem is due to the out-of-order reintegration
that breaks sequentiality which appears to break causality (i.e., some later
event happened, while some earlier one didn’t). One possible solution is
to introduce some weaker notion of sequentiality. E.g., to postulate that
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all operations executed by a single thread or process have to be reinte-
grated in their causal order, without enforcing total ordering of all op-
erations. This can be easily achieved by adding dependencies between
state updates of all operations issues by a given thread or process. The
drawbacks of this are

– it is insufficient in some cases, e.g., when threads or processes syn-
chronize their execution through the non-file-system means (e.g., by
using interprocess communication)—in such cases users might ex-
pect that operations executed by independent processes will always
be executed in order;

– this solution doesn’t address the case of meta-data proxy server,
where unbounded amount of state updates can be (and has to be)
cached;

` [Nathan’s proposal] it seems to be enough to enforce full write-out only
when access restrictions are weakened. This observation allows to avoid
full write-outs most of the time, but it doesn’t address meta-data proxy
server case;

` a notion of strong consistency can be introduced. Let’s say that a file sys-
tem is strongly consistent when in addition to being consistent (see [3]
for a definition of a file system consistency), it contains effects of all op-
erations executed by every client up to certain moment in the local time
of this client. Strong epoch is then defined as a sequence of epochs trans-
ferring file system from one strongly consistent state to another. For ex-
ample, any strong epoch containing state updates for chmod a+r /DIR
also contains updates for rm /DIR/d0/d/secret . Changing batching
algorithm to always produce batches for strong epochs closes the security
hole in question;

` allow partial write-out, but keep track on the server of where points of
strong consistency (in addition to the points of usual consistency, defined
by the epoch boundaries) are. If the client fails before communicating
whole strong epoch to the server, the latter rolls back all epochs that are
part of the incomplete strong epoch. That might cause roll back of epochs
from other clients (that depends on epochs being rolled back), and evic-
tion of clients that obtained locks on the objects in rolled back epochs
(that process is done iteratively).

Reasonable solution for this is to specify consistency guarantees through a
mount option (procfs tunables, ioctl() invocation, etc.), and to support two
modes:

` total write-out, where invlidation of any meta-data lock causes whole
cached state to be written out, and
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` careful: compose a batch according to normal dependency rules, but once
a suspicious record is added to the batch, also add to it all the records
preceeding in the global node time. Here suspicious record is one that
changes name-space visibility: relaxation of permissions on a file or a
directory, cross-directory rename, creation of a hard-link, etc.

` relaxed: ignore the issue completely, construct batches based solely on
dependencies. This is compatible with ext2, UFS+softupdates, NTFS.

5.3 Undo

Client creates new sub-directory, populates it with some number of files, and
then removes them all.

` file creation proceeds as described in the Sub-tree-operations use case.

` unlink() results in two state update records: DELETE_NAME record in
the parent directory log, and FILE_DESTROY record in the file log (if
nlink drops to 0 in the result of unlink). Before adding record to the
log, log is scanned to check whether new record can be coalesced with
existing one. E.g., DELETE_NAME(“foo”) record coalesces with the last
preceding ADD_NAME(“foo”) in the log, resulting in SETATTR(MTIME)
record. Similarly, pair of records

RENAME(“foo”, “bar”), ..., DELETE_NAME(“bar”)

coalesces into DELETE_NAME(“foo”), and pair of

SETATTR(ATIME), ... SETATTR(ATIME|CTIME)

records coalesces into SETATTR(ATIME|CTIME). Coalescing can cause
more coalescing further down the log;

` when a record R is removed from the log due to coalescing, following
steps are done:

– dependencies from R to other records are removed;

– records dependent on R, become dependent on the record preceding
R in the log. If R is the first record in the log, these dependencies are
removed;

` when record R is moved in the log due to coalescing, dependencies are
also updated. It is at this point that dependencies might stop being a
partial order. Such modification of dependency graph doesn’t change
epoch boundaries, because all graph nodes involved are already part of
the same epoch.
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` if no reintegration happened during creation phase, then removal of all
files would result in the empty logs, except for the SETATTR(MTIME|ATIME|CTIME)
record for the top-level directory;

` if reintegration happened during creation phase, then all records for file
creation, not integrated when removal phase started are undone. Records
for removals of files whose creation is already reintegrated are sent to the
server(s).

5.4 Data-consistency

Client executes data and meta-data operations on existing files, when conflict-
ing lock on some data is requested by other client.

Data cache for stripes can be written out independently of the meta-data cache
for the corresponding file.

5.5 Unlink

Client removes a number of (not hard-linked) files.

After all removal operations are completed locally, meta-data cache contains

` DELETE_NAME records in the parent directory log;

` FILE_DESTROY records in the file logs;

` STRIPE_DESTROY records in the stripe logs;

FILE_DESTROY records are not sent to the MDS, because the server knows
when last link to the file is removed and will destroy object automatically. Rein-
tegration of DELETE_NAME’s to the MDS’es and STRIPE_DESTROY’s to the
OST’s is an example of coordinated reintegration. Client sends sub-batches,
tagged with epoch numbers, to the MD and OS servers in parallel, and keeps
RPC’s in memory until batch is committed on every participating server.

5.6 Recovery

Client performs a number of MD operations. (A) Sends batch to the server.
(B) Server executes batch. (C) Client gets reply. (D) Server commits batch. (E)
Client gets commit notification. (F). Server crashes at either A, B, C, D, E, or F.

See Epoch design documents for detailed description of recovery use cases.
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5.7 Dependency, rename, CMD-rename

Client performs MD operation, involving more than one object (link, unlink,
etc.). Lock protecting of the objects involved is revoked.

Specifically rename, which is a special case of the same use case in which de-
pendency is bi-directional: both parent directories depend on each other.

Even more specifically, a situation where client renames file across directories,
located on different MD servers. Lock, protecting one of these directories, is
revoked.

Batching logic guarantees that file system consistency is preserved in this case.
See Sub-tree-conflict use case for a description.

6 Logic specification

6.1 Data structures:

` state update record: represents state update for a file system object. Fields:

– an epoch number;

– a pointer to the object this record is updating state for;

– an amount of space record consumes in the RPC (both message and
bulk);

– a linkage into per-object log;

– a linkage to the dependent operations;

– optionally (for debugging) a list of records that are dependent on
this one;

– a linkage into per-mount-point sequential log of all operations, or-
dered by time. This is necessary to keep track of strong epochs;

– a pointer to operation vector. This includes operations to

• check whether this record commutes with a given one;
• check whether this record can be coalesced with a given one,

and if so, what is the resulting record;
• add record to the RPC
• destructor: called when record is destroyed by generic caching

code;

– record specific state, e.g., attributes for SETATTR, file name for NAME_ADD,
etc. Some state is generic, for example, any record mutating object
state has an mtime value as one of its attributes;
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6.2 Caching 6 LOGIC SPECIFICATION

` record log: an ordered list of records, attached to particular file system
object (directory or file). Can be implemented as a simple double-linked
list, protected by a spin-lock which is used to protect fields of all records
on the log.

` batch: a sequence of records selected for reintegration. Batch has per-
server sub-batches, allocated lazily as records are added to the batch.

6.2 Caching

Meta-data caching is implemented as a new layer wbcc in the client md-stack,
replacing or augmenting mdc.

6.3 Batching

Batch construction starts from a certain root set. Batching is by its very na-
ture a single-threaded process: it doesn’t make sense to build two batches
concurrently (unless these concurrent processes can discover each other and
cooperate to build a single consistent batch). Algorithms below assume (and
implementation should check) that only one batch is constructed at a time.

batch_build(root_set) {
list batch; /* batch of records being constructed */
int more1;
int more2;
batch = root_set;
do {

more1 = batch_build_sequential_closure(batch);
more2 = batch_build_dependency_closure(batch);

} while (more1 || more2);
}
int batch_build_sequential_closure(batch) {

foreach(record in batch) {
lock(record->log);
/* move all records preceding @record in the log

into @batch, and remove them from the log. */
list_splice(record->log_linkage.prev, batch);
unlock(record->log);

}
return nr_moved > 0;

}
int batch_build_dependency_closure(batch) {

foreach(record in batch) {
lock(record->log);
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foreach(deprec in record->dependency_list_linkage) {
LASSERT(record->log != deprec->log);
/* to lock both logs in a dead-lock safe manner

standard try-and-repeat lock sequence is
used. */

try_repeat_lock(deprec->log);
if (!(deprec in batch))

list_add(deprec, batch);
unlock(deprec->log);

}
unlock(record->log);

}
return nr_added > 0;

}

Note: pseudo-code above only shows the logic of the execution and outline of
locking model. Actual implementation will be optimized in the obvious ways
(e.g., to not take and release the same lock over and over again).

6.4 Reintegration

6.4.1 client side

Once batch is built, an RPC is constructed from it, and sent to the server.

wbcc_rpc_build(subbatch) {
struct ptlrpc_request *req;
int nr_pages;
size_t mssg_size = 0;
size_t bulk_size = 0;
cfs_page_t **pages;
struct lu_epoch_header *head;
foreach(record in subbatch) {

/* check for possible merging here... */
mssg_size += record->mssg_size;
bulk_size += record->bulk_size;

}
nr_pages = bulk_size > > CFS_PAGE_SHIFT;
pages = alloc(nr_pages, sizeof pages[0]);
for (i = 0; i < nr_pages; ++i)

pages[i] = alloc_page();
req = ptlrpc_prep_req_pool(..., MDS_REINT, ..., mssg_size);
desc = ptlrpc_prep_bulk_imp(req, nr_pages, BULK_GET_SOURCE,

MDS_BULK_PORTAL);
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head = lustre_msg_buf(req->rq_reqmsg, ...);
/* fill in head: epoch number, other servers containing parts of

this epoch, etc. */
/* a buffer for inline parts of records (if any) */
buf = lustre_msg_buf(req->rq_reqmsg, ...);
foreach(record in subbatch) {

record->ops.put_in_rpc(record, buf, address);
/* update buf (pointing into message) and address

(pointing into page), kmap()/kunmap(), ... */
}
for (i = 0; i < nr_pages; ++i)

ptlrpc_prep_bulk_page(desc, pages[i], ???, CFS_PAGE_SIZE);
wbcc_announce_cached(mssg_size + bulk_size);
req->rq_interpret_reply = wbcc_interpret_reint;
ptlrpcd_add_req(req);

}

Locks cannot be released until reply is received from the server (modulo NRS
reordering). Details of recovery are encapsulated inside of PTLRPC layer and
described in Epochs design documentation

6.4.2 server side

` when batch is received, store information from its header (including epoch
number and a list of other servers containing parts of this epoch) into spe-
cial epoch llog hanging off LAST_RCVD file entry;

` then start bulk transfers and apply batch records one by one as pages
arrive. This can be done my multiple threads concurrently, as updates in
the batch are not conflicting;

` server assumes (and checks) that locks, on the objects involved into rein-
tegration records are held by the client, and doesn’t attempt to acquire
locks by itself.

` whenever record is applied, write undo record into llog as part of the
same transaction;

` on recovery after a server failure, scan LAST_RCVD file, and all epoch
llogs, and for every not globally committed epoch contact every server
mentioned in the epoch header, to initiate epoch recovery process (see
Epochs design documentation for details);
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7 State management

7.1 State invariants

` cached meta-data update is protected by a DLM lock;

` batch is a union of full epochs;

7.2 Scalability & performance

WBC is supposed to improve scalability for the most work-loads. Batched
reintegration reduces number of messages communicated over network, fur-
ther reducing interrupt and context-switch activity on the servers and clients.
Meta-data caching allows operations to be executed locally, reducing system
call latency.

Possible scenarios where WBC can degrade performance are

` high contention for meta-data. In this case extra RPCs are necessary to
cancel locks cached on the client;

` frequent forced meta-data synchronization, e.g., fsync-intensive work-
load. In this case overhead of maintaining cache can be important. Also,
sending small meta-data updates through bulks is sub-optimal, but this
can be optimized out;

7.3 Recovery changes

Recovery is changed significantly, see Epochs design documents for details.

7.4 Locking changes

Locking is changed significantly, see Sub-tree Locks design documents for de-
tails.

7.5 Disk format changes

Disk format is changed (undo logs, epochs tracking, etc.), see Epochs design
documentation for details.
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7.6 Wire format changes

7.7 Protocol changes

New rpc type for bulk meta-data updates is introduced.

7.8 API changes

Caching API is introduces. See Logical Specification.

7.9 RPCs order changes

RPC ordering requirements are changed, see Epochs design documents for de-
tails.

8 Alternatives

Assorted list

` [Eric Barton] instead of having separate data-structure for operation log,
keep cached meta-data updates in bulk RPC pages from the very begin-
ning. Advantage: avoids extra copy during RPC construction. Disadvan-
tage: makes space management more difficult;

` [CMD2 WBC] keep cached meta-data operations as in a global log, and
send them as a sequence of RPCs. Advantage: simplicity, server can
check validity of meta-data updates. Disadvantage: less efficient.

9 Focus for inspections

` partial write-out;

` error handling during reintegration;

10 References

1. Architecture page: Write Back Cache http://arch.lustre.org/index.
php?title=Write_Back_Cache
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2. bugzilla 14170: METADATA WBC basic functionality https://bugzilla.
lustre.org/show_bug.cgi?id=14170

3. Architecture page: Epochs http://arch.lustre.org/index.php?
title=Epochs
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