Epochs

Alexander Zarochentsev (alexander.zarochentsev @ sun.com)
based on the Epochs arch page by Nikita Danilov (nikita.danilov@sun.com)

2008-02-14

1 Introduction

In the following, an epoch is a collection of file system modifications, subject to certain
constraints detailed below, that is used to merge distributed state updates (both data and
meta-data) in a redundant cluster configuration.

Typical (in fact, motivating) redundant configurations are WBC, where redundancy is
between objects on servers, and their copies cached by client, meta-data replication,
and (clustered) meta-data proxy servers.

2 Definitions

For the purpose of the following discussion let’s separate out two components in the
cluster:

source a part of the cluster that caches some updated file system state, that is to be
merged into destination. Source can be either a single client node (WBC case),
a single server node (meta-data proxy), or a collection of server nodes (proxy
cluster); destination a part of the cluster (server nodes) where updated state from
the source is merged into.

destination can be either a next level proxy, or a home server; There might be multiple
sources and destinations in the single cluster, arranged in a tree-like pattern:
WBC client is a source whose destination is a proxy server, that, in turn is a
source for its master.

file system consistency a file system is consistent when the state maintained on its
servers, both on persistent and volatile storage together defines a valid name-
space tree consistent with the inode/block allocation maps, and other auxiliary
indices like FLD, SEQDB, OI, etc. File system consistency is only meaning-
ful provided some notion of a logical time, making it possible to reason about
collection of states across multiple nodes;

2 DEFINITIONS

operation an unitary modification of user-visible file system state, that transfers file
system from one consistent state to another consistent state. Typical example of
an operation is a system call;

state update an effect of an operation on a state of an object it affects. Single operation
can update state of multiple objects, possibly on multiple nodes;

undo entry a record in a persistent server log that contains enough information to
undo given state update even if it were partially executed, or not executed at all;

epoch a collection of state updates over multiple nodes of a cluster, that is guaran-
teed to transfer source file system from one consistent state to another. Ultimate
sources of epochs are: a WBC client:

for a single WBC client epoch boundaries can be as fine grained as a single operation;

e a single meta-data server: when MDS executes operations on behalf of non-
WBC clients, in packs state updates into epochs defined by the transactions of
the underlying local file system;

e a cluster of meta-data servers: when non-WBC client issues meta-data operation
against the cluster of meta-data servers, this operation is automatically included
into an epoch defined by the Cuts algorithm running on the cluster;

Once epoch is formed it traverses through the proxy hierarchy, and can be merged with
other epochs, but cannot, generally, be split into smaller pieces.

epoch number a unique identifier of an epoch within particular source. For a single
WBC client this can be as simple as an operation counter, incremented on every
system call. For a single meta-data server, epoch number is tid (identifier of the
last transaction committed to the local file system). For a proxy or replication
cluster, epoch number is determined by the CUTs algorithm.

domain destination fs subset where WBC clients apply their changes
global epoch an epoch for non -WBC clients (old-style clients)

batch a collection of state updates across multiple objects on the same source node,
such that (A) if a batch contains an update from some epoch, it contains all
updates from this epoch belonging to this node (i.e., batch contains no partial
epochs), and (B) the source node holds exclusive locks over the objects in the
batch (at the logical level that is: in the presence of NRS locks might be already
released);

epoch marker a special dummy record inserted in a batch that marks epoch bound-
ary; sub-batch a set of state updates from the batch that are to be merged to the
particular destination server. The batch is divided into the sub-batches;

4 FUNCTIONAL SPECIFICATION

batch reintegration a process of sending a batch over the network from the source to
the destinations, followed by execution of state updates in the batch;

batch recovery a roll-forward of already reintegrated, but not committed batch in the
case of destination failure; batch roll-back a roll-back of partially committed
batch in the case of destination failure.

epoch dependency means one epoch cannot be undone without undoing another. Sim-
ple case of epoch dependency is subsiquent epochs from one source. More com-
plex case is epochs with overlapping domains.

dependency log a server log to track epoch dependencies

epoch referencing a reference of in-memory epoch object keeping the epoch and cor-
responding undo logs from purging.

epoch header meaningful for WBC-epochs, a header preceeding all batches contain-
ing epoch number and all participating servers.

3 Requirements

recoverability, atomicity - maintain cluster-wide consistent snapshots, atomic apply-
ing of client changes.

non-blocking - do not introduce delays in fs operations.

concurrency - parallel batch reintegration

isolation - independent epoch rollback, at least not completed WBC-epoch can be
rolled back independently from other epochs

usability - use for WBC, replication, etc.

4 Functional specification

4.1 Overview

There are two different types of epochs. There is a global epoch for non-WBC clients,
the disign of that borrowed from the CMD Rollback HLD document. And the WBC
epochs, sourced by WBC-clients.

WBC-epochs of different sources and global epochs are logged independently on each
server by server redo-logs.

The server undo-logs are used to restore cluster consistent state, by undoing not-completed
epochs.

4.2 WBC-epochs 4 FUNCTIONAL SPECIFICATION

4.2 WBC-epochs

A WBC clients group individual fs operations into own epochs. WBC client has an
epoch counter and informs the servers about epoch change (or add epoch number to
each request).Each server has a specific undo-log for each WBC-client.

4.3 Global epochs

A brief explanation of CMD Rollback Design:

e The global epochs are sourced by one server (epoch generator) in the cluster.
The role of epoch generator is periodically switched to another server.

e Each server has own current epoch. The server epochs are changed by explicit
EPOCH_CHANGE requests or during a distributed transaction (op/depop, in
CMD Rollback HLD terminology).

e A distributed transaction started after the servers have synchronized their epochs.
Epoch switching might wait running disctributed transaction to complete or the
epoch containing the transaction gets referenced and current epoch is increased.

e Meta data changes are recorded in server undo-logs, to allow not completed
epoch to be rolled back.

e The controlling server gatheres info about committed batches info from all the
servers, calculates and broadcasts a minimum committed epoch number to use
for purging server undo-logs.

e more details are in CMD Rollback HLD.

4.4 Distributed epoch commit, garbage collection issues
4.4.1 Distributed WBC-epochs

The WBC client sends special epoch header the servers participating the epoch. The
epoch header contains a list of all those servers ids, so the participants know each other.

When a server commits all batches from the epoch, it exhanges batch commit informa-
tion with other participants of the epoch. If it is know that all participant have commit-
ted all the epoch batches, the epoch can be marked as committed on all participating
Servers.

4.5 Recovery 4 FUNCTIONAL SPECIFICATION

4.4.2 Global and WBC- epochs dependency
There is a dependency between global and WBC- epochs that affects purging of old
epochs and corresponding undo logs.

Suppose a WBC client acquired locks during some global epoch GPO. Then WBC
client started to modify fs in its WBC-epoch P1 during the same global epoch. It is
impossible to undo GPO without undoing P1. The WBC undo-logs no matter how
many WBC-epochs there should be preserved until GPO is committed.

In general, any epochs with overlapping domains depend on each other, regardless
whether the epochs are global or not.

For tracking that dependency a special server log is used, an epoch dependency occur-
res when an object is taken from one epoch domain to another.

4.4.3 Client redo-logs GC

Client redo-logs are purged when the corresponding epoch gets committed.

4.5 Recovery

4.6 Epoch transformation/aggregation

PI'OXy S€rver case.

9 FOCUS FOR INSPECTIONS

5 Use cases

6 Logic specification

7 State management

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

State invariants
Scalability & performance
Recovery changes
Locking changes

Disk format changes

Wire format changes
Protocol changes

API changes

RPCs order changes

8 Alternatives

9 Focus for inspections

