
Interoperability at server side

Rahul Deshmukh

28th April 2008

1 Introduction

1.1 Definitions

Following terminologies are used in this HLD (These definitions are taken from arch
page):

• OLD: any major release in b1_6 line of development. (release 1.6)

• OLD.X: a release in b1_6 line containing client that is able to interact with a
NEW.0 md server. (Tentatively 1.8.)

• NEW.0: first release based on HEAD. This features kernel server, and uses ld-
iskfs as a back-end. This is (tentatively) 2.0. It is important to note that NEW.0
is a temporary intermediate release whose purpose is to effect transition from
ldiskfs-based to DMU-based clusters.

• OLD object, NEW object: In NEW.0 release, MDS will be upgraded from fid-
less to fid-enable, keeping the underlying ldiskfs storage in tact. Due to this in
NEW.0 release, NEW objects (created by NEW.0 fid-enabled MDS) and OLD
objects (already present, created by OLD.X fid-less MDS) will be present.

• NEW.1: next release based on HEAD. This release introduces support for fids
on OST, and DMU as a back-end, in addition to continued support for ldiskfs.
This is (tentatively) 2.x.

• Fill-in-fid: a special not otherwise used fid value, reserved to indicate in a CRE-
ATE RPC that client requests server to generate fid for newly created object on
client’s behalf. This fid is taken from one of the system-reserved fid sequences.

1



1.2 Background 3 REQUIREMENTS

1.2 Background

In OLD release both Meta Data Server (MDS) and it’s storage, do not use fid. In NEW.1
release both MDS and it’s storage will be fid-enabled. To provide interoperability
between these two releases (OLD/1.6 and NEW.1/2.X release) according to the (+-1)
policy, OLD.X and NEW.0 is introduced.

• OLD.X will address network protocol related interoperability changes (i.e. here
client will have ability to talk fid-less and fid-enabled protocol).

• And NEW.0 release having interoperability changes which will address disk in-
teroperability part (i.e. fid-enabled MDS running on OLD disk format).

This HLD will concentrate on disk interoperability related events i.e. changes intro-
duced in NEW.0 release.

ID Type of MDS Type of MDS-Storage Description
OLD fid-less fid-less Fid-less version

OLD.X fid-less fid-less Interoperability: Network protocol
NEW.0 fid fid-less Interoperability: Disk
NEW.1 fid fid Fid-enabled version

Understanding of fid and NEW MDS stack 1 is assumed. In brief, the MDS stack
consists of MDT (networking details), CMM (placement policies), MDD (meta data
operations) and OSD layer (object storage details). (i.e. MDT->CMM->MDD->OSD)

2 Architecture

Link to the architecture design: http://arch.lustre.org/index.php?title=Interoperability_fids_zfs

Understanding of interoperability details mention in the link are assumed.

3 Requirements

Requirements for running fid-enabled MDS on fid-less storage.

1MDS stack overview is present in mds-layering-hld.lyx

2



3.1 Functional requirements 3 REQUIREMENTS

3.1 Functional requirements

3.1.1 NEW.0 Release

ID Quality Trigger Affected

Description

Index operations:
fid_inode_ea

Usability Create, lookup, delete
operations on newly created
files, from user point of view
OR index operation on NEW
objects, from Lustre point of

view

OSD For NEW object, name->fid
mapping should work i.e. fid
should be stored in inode’s ea

to make it persistent.

Index operations:
igif

Usability Lookup or delete operations
on already created files, from
user point of view OR index
operation on OLD objects,
from Lustre point of view.

OSD OLD object will not have fid
stored in inode ea, so to

support name->fid mapping,
igif (which is dynamically
generated fid, from ino and

inode generation or in
simpler words it is used as fid

for those files who do not
have formal fid) support must

be present
Iterator

operations
Usability Directory read operation,

empty directory check (say
while removing directory)

from user point of view OR
iterator operations from

Lustre point of view.

OSD Support for iterator based on,
fid-less storage.This also

must handle OLD as well as
NEW objects.

mount Usability Mount command OSD Fid-enabled mds should be
able to mount on fid-less

storage, transparently.

3.1.2 OLD.X release

ID Quality Trigger Affected

Description

To remove fid ea Usability Any operation that will
access a file

N/A To support upgrade and
downgrade multiple times,
Fid-less (or OLD.X) MDS
needs to remove fid from

inode ea (inserted by NEW.0
MDS), if present.

3



3.2 Architecture requirements 4 EXTERNAL FUNCTIONAL SPECIFICATIONS

3.2 Architecture requirements

• All the changes needs to be handled at OSD layer. This will make sure minimal
or no changes needed at the layer above OSD (MDS stack is MDT->CMM-
>MDD->OSD).

4 External Functional specifications

In NEW.0 release we will upgrade fid-less MDS to fid-enabled MDS, keeping the un-
derlying storage same (i.e. ldiskfs or can be called as fid-less). To make this possible,
following main conditions needs to be fulfilled (restating the requirement here for bet-
ter understanding).

• To maintain index mapping for OLD as well as NEW object (requirement ID
from section 3.1 “fid_inode_ea” and “igif”), to support basic operations (like file
lookup). Note here that index mappings are introduced in fid-enabled MDS to
support Cluster Meta Data (CMD) operations.

• To support iterator running on fid-less storage (requirement ID from section 3.1
“Iterator operations”) which is required for operations related to reading direc-
tory (e.g. ls <no input>)

4.1 Prototypes

This section describe what needs to be done to fulfill above mention conditions.

4.1.1 Index Operation APIs:

Index operations, helps to maintain persistent mapping between key (e.g. fid, ino) and
it’s value (e.g. name, fid). Fid-enable MDS mainly maintains three types of persistent
mappings. These are name->fid, fid->ino and fid->mdt.

To maintain name->fid mapping, fid needs to be stored in such a way that, it can be
retried back for given name during lookup and also it should not introduced any disk
format change (As in NEW.0 release, meta data is stored in OLD.X format or ldiskfs
format). If fid is stored inode’s extended attributes (ea), then it will satisfy both condi-
tions to maintain name->fid mapping.

Note: This is just for reference, when fid-enabled MDS runs on fid-enabled storage i.e.
ldiskfs+iam, then fid is stored in directory entry to maintained name->fid mapping.

Prototypes of functions which will be implemented in NEW.0 release, to maintain
name->fid mapping, for both NEW and OLD objects are as follows (These APIs are
self explanatory)

4



4.1 Prototypes 4 EXTERNAL FUNCTIONAL SPECIFICATIONS

• Index insert:

int osd_index_ea_insert (const struct lu_env *env,

struct dt_object *dt,

const struct dt_rec *rec,

const struct dt_key *key,

struct thandle *handle,

struct lustre_capa *capa);

• Index lookup:

int osd_index_ea_lookup (const struct lu_env *env,

struct dt_object *dt,

struct dt_rec *rec,

const struct dt_key *key,

struct lustre_capa *capa);

• Index delete:

int osd_index_ea_delete (const struct lu_env *env,

struct dt_object *dt,

const struct dt_key *key,

struct thandle *handle,

struct lustre_capa *capa);

Other mappings (fid->ino and fid->mdt) can be maintain, with less or no change, as
these mappings are stored in special files (viz. /oi and /fld) . These mappings will be
maintained by existing functions osd_index_insert(), osd_index_lookup(), osd_index_delete().

4.1.2 Igif handling:

In NEW.0 release, MDS will be upgraded from fid-less to fid-enable, keeping the un-
derlying ldiskfs storage in tact. Due to this in NEW.0 release, NEW objects (created by
NEW.0 fid-enabled MDS) and OLD objects (already present, created by OLD.X fid-
less MDS) will be present. So to support name->fid mapping for OLD object igif will
be used. Igif is nothing but dynamically generated fid, from ino and inode generation
or in simpler words it is used as fid for those files who do not have formal fid.

In NEW.0 release igif format will be as (This format will also helps to maintain fid
version, which will be useful in version based recovery):

• sequence = (0:33 and ino:31)

• object_id = gen

5



4.1 Prototypes 4 EXTERNAL FUNCTIONAL SPECIFICATIONS

• version = LUSTRE_FID_VERSION

Due to change in igif format, following function will be impacted or need to be modi-
fied:

• Build Igif:

To build igif following function is used. This function is mainly responsible to
generate igif (i.e. dynamic fid) from ino and inode generation number.

void lu_igif_build(struct lu_fid *fid, __u32 ino, __u32 gen)

• Check igif:

This function checks if the input value is igif or not (in detailed, it uses sequence
no to make a decision)

static inline int fid_is_igif(const struct lu_fid *fid)

• Extracting values from igif:

Following functions extracts the particular(ino, inode generation number) value
from igif format. These will modified considering changed in igif format.

__u32 lu_igif_ino(const struct lu_fid *fid)

__u32 lu_igif_gen(const struct lu_fid *fid)

4.1.3 Iterator Operation API:

Iterator operations are used to traverse the index mapping (i.e. key->value pair). In
NEW.0 release, to traverse fid->ino and fid->mdt mapping generic IAM iterator can be
used. But to traverse name->fid mapping new iterator API needs to be implemented
(as fid is stored in inode’s ea). Their prototypes are as follows (These APIs are self
explanatory):

• dio_it->init()

struct dt_it *osd_it_ea_init (const struct lu_env *env,

struct dt_object *dt,

int writeable,

struct lustre_capa *capa);

• dio_it->fini()

6



4.1 Prototypes 4 EXTERNAL FUNCTIONAL SPECIFICATIONS

void osd_it_ea_fini(const struct lu_env *env,

struct dt_it *di);

• dio_it->get()

int osd_it_ea_get (const struct lu_env *env,

struct dt_it *di,

const struct dt_key *key);

• dio_it->put()

void osd_it_ea_put (const struct lu_env *env, struct dt_it *di);

• dio_it->next()

int osd_it_ea_next (const struct lu_env *env, struct dt_it *di);

• dio_it->del()

int osd_it_ea_del (const struct lu_env *env, struct dt_it *di,

struct thandle *th);

• dio_it->key()

struct dt_key *osd_it_ea_key (const struct lu_env *env,

const struct dt_it *di);

• dio_it->key_size()

int osd_it_ea_key_size (const struct lu_env *env,

const struct dt_it *di);

• dio_it->rec()

struct dt_rec *osd_it_ea_rec (const struct lu_env *env, const struct dt_it *di);

• dio_it->store()

__u64 osd_it_ea_store (const struct lu_env *env,

const struct dt_it *di)

• dio_it->load()

int osd_it_ea_load(const struct lu_env *env, const struct dt_it *di, __u64 hash)

7



4.2 Layering of API’s 4 EXTERNAL FUNCTIONAL SPECIFICATIONS

4.2 Layering of API’s

4.2.1 Index API

The layering of API, applicable to index operations are as follows:

• fid->ino and fid->mdt mapping

Layer 1: User of the API FLD, OSD (e.g. osd_oi_insert())
Layer 2: Indexing API used (Wrapper API) Indexing API at OSD (e.g. osd_index_insert())
Layer 3: Generic API used by Layer 2 IAM Indexing API (e.g. iam_index_insert())

To understand it completely e.g. for fid->ino mapping functions will be called in
sequence as osd_oi_inset()->osd_index_insert->iam_index_insert()

• name->fid mapping

Layer 1: User of the API MDD (e.g __mdd_index_insert())
Layer 2: Indexing API used Indexing API at OSD (e.g. osd_index_ea_insert())

4.2.2 Iterator API

The API layering for iterator API is as follows:

Layer 1: User of the API MDD Layer (e.g __mdd_readpage())
Layer 2: Iterator API Iterator API at OSD (e.g. osd_it_init())

4.2.3 Igif:

The layering of mostly used API, are as follows:

• lu_igif_build

This function is used by osd_index_lookup(), when fid for OLD object needs to
be returned.

Layer 1: User of the API (lu_igif_build) OSD, osd_index_lookup, fid for OLD object
Layer 2: Igif check lu_igif_build()

• fid_is_igif():

This function is mostly used by Object Index (fid->ino) mapping functions to
check that fid is igif or not. It will make sure that for igif, fid->ino mapping is
not check. (as there will not be any entry) and also make sure that (osd_oi_insert-
>osd_index_insert()) osd_index_insert will never get igif as input.

Layer 1: User of the API (fid_is_igif) OSD, Object index functions (i.e. osd_oi_insert())
Layer 2: Igif check fid_is_igif()

8



5 USE-CASE SCENARIOS

5 Use-Case Scenarios

5.1 Describe use cases for all normal and abnormal uses of exter-
nally visible functions.

5.1.1 Index operations

Following are the use-cases for create, lookup, rename and delete operations consider-
ing new interoperability index APIs and Igif changes or requirement ID from section
3.1 “fid_inode_ea” and “igif” for NEW.0 release.

1. Object creation in NEW.0 release (i.e. touch file_name or other alternative way
to create file.):

(a) Client allocates fill-in-fid and sends file creation request to MDS.

(b) MDS gets the request, it will first checks if the fid is equals to special fill-
in-fid, then it generates new fid from an internal fid sequence.

(c) MDS then looks for that file name, to check if it is present.

(d) If file is not present then object allocation and initialization will happen at
MDT and then at CMM layer.

(e) Then at OSD layer, inode will be created for that file. After that fid is
inserted into inode’s ea (that will be used in name->fid mapping) and fid-
>ino mapping is created by inserting object index entry into global file
using IAM functions. Here there is no change, the way fid->ino mapping
done.

(f) After that at MDD layer, ldiskfs style directory entry (i.e. {name, ino}) is
added using osd_index_ea_insert() (i.e. osd_index_ea_insert()->ldiskfs_add_entry()
). This will helps to maintain name->fid mapping (i.e. name->dir_lookup()-
>inode->read_ea()->fid).

(g) Success is returned to client.

2. Object lookup in NEW.0 release

• For NEW object (i.e ls new_file).

(a) Consider any request from client to MDS, to access inode of newly
created file.

(b) MDS gets the request, it will first lookup for that file-name, to check if
it is present. For that MDD layer requests interoperability mode index
lookup function (These are the function which will be build using ld-
iskfs functions. These functions read fid stored in inode ea), to get fid
for given name. This is the first index lookup (key=name, value=fid).

(c) If file is present, then fid stored in inode’s ea will be read. If fid exists
then it will be returned by interoperability mode index lookup func-
tion.

9



5.1 Describe use cases for all normal and abnormal uses of externally visible
functions. 5 USE-CASE SCENARIOS

(d) Got the fid, OSD layer check if second index lookup (key=fid, value=ino)
is needed or not by checking if fid is igif or not. In this case fid is not
igif. So it requests IAM index lookup function to get ino for given fid.
Here IAM index lookup functions will be used.

(e) If fid is present in object index mapping, then IAM index lookup func-
tion returns ino.

(f) Using ino, load the inode and read the required data.
(g) Fid is returned to client if necessary.

• For OLD object (i.e ls old_file).

(a) Consider any request from client to MDS, to access inode of already
existing file.

(b) MDS gets the request, it will first lookup for that file-name, to check if
it is present. For that MDD layer requests interoperability mode index
lookup function to get fid for given name. This is the first index lookup
(key=name, value=fid).

(c) If file is present, then fid stored in inode’s ea will be read. Fid will not
present in inode ea as this file is created by fid-less server. In this case
interoperability mode index lookup function will dynamically generate
fid, called as igif (Igif will be build using ino + generation no, pair)

(d) Got the fid, OSD layer check if second index lookup (key=fid, value=ino)
is needed or not by checking if fid is igif or not. In this case fid is igif.
So it will not request to second index lookup, instead inode number
and inode generation stored in igif will be returned.

(e) Using ino, load the inode (already present in memory) and read the
required data.

(f) Fid is returned to client if necessary.

3. Object rename in NEW.0 release (i.e. mv src_file tgt_file)

(a) Client send request to MDS to rename the file meta-data.

(b) MDS gets the request, it will first looks for that src file name, to check if it
is present.

(c) MDS gets the request, it will first looks for that tgt file name, to check if it
is present.

(d) If the src file present and tgt file is not present then, MDD layer request
to remove directory entry of src object and tgt object. This will done
using interoperability mode index function. (i.e.osd_index_ea_delete()-
>ldiskfs_delete_entry()). This description holds true for NEW object as
well for OLD object

(e) After that MDD layer request to add directory entry for tgt object, using in-
teroperability mode index function. (i.e. osd_index_ea_insert()->ldiskfs_add_entry()).
Hence we have replaced the src name with tgt name (by removal of src
dir_entry and addition of tgt dir_entry) without touching the fid stored in

10



5.1 Describe use cases for all normal and abnormal uses of externally visible
functions. 5 USE-CASE SCENARIOS

inode ea.This description holds true for NEW tgt object as well for OLD
tgt object.

(f) Success is returned to client.

4. Object Delete in NEW.0 release (i.e. rm file_name)

(a) Client send request to MDS to delete the file meta-data.

(b) MDS gets the request, it will first looks for that src file name, to check if it
is present.

(c) MDD layer request to interoperability index functions to remove the name-
>fid mapping (i.e. remove directory entry only).

(d) OSD layer request to IAM functions to remove the fid->ino mapping.

(e) Object cleanup is done layer wise.Note here that inode->nlink count == 0
then only object cleanup is done.

(f) Success is returned to client.

5.1.2 Iterator operations

Following are the use-cases for directory read, empty directory check operations con-
sidering new interoperability iterator functionality or requirement ID “Iterator opera-
tions” for NEW.0 release.

1. Directory read in NEW.0 release (i.e. ls <no_input>)

(a) Client send directory read request to MDS.

(b) MDS get the request, through MDD layer it iterate over the directory using
interoperability mode iterator functions to get required data.

(c) Put the required data in the format requested by client and send it to client.

2. Empty directory check in NEW.0 release (i.e. rmdir dir_name)

(a) Client send to remove the directory meta data.

(b) MDS get the request, through MDD layer it iterate over the directory using
interoperability mode iterator functions to check if directory is empty or
not.

(c) If the directory is empty then MDS remove the directory meta data.

(d) Success is returned to client.

11



5.2 Describe use cases demonstrating interoperability between the software with
and without this module. 5 USE-CASE SCENARIOS

5.2 Describe use cases demonstrating interoperability between the
software with and without this module.

5.2.1 Interoperability between the software with this module (Interoperability
within the scope of this HLD is discussed )

This HLD deals with changes done in MDS for interoperability mode. Those changes
comes into picture when upgrading/downgrading from OLD.X/NEW.0 to NEW.0/OLD.X.
So only those cases are considered here.

1. Up-gradation/Down-gradation from OLD.X/NEW.0 to NEW.0/OLD.X,

• In NEW.0 release, to run fid-enabled NEW.0 MDS on fid-less OLD.X mds-
storage some functionality addition will be done in NEW.0 MDS. These
functionality additions are nothing but tasks discussed in this HLD (except
for orphan handling task discussed in separate document, which comes into
picture in case of recovery). These details are highlighted here, just to
understand the place where these changes fit into. Also to understand how
these changes will help, possible upgrade(+1) and downgrade(-1).

• To start with, all clients, MDT and OSTs are running OLD.X release.
OLD.X clients and OSTs are capable of talking to NEW.0 protocol.

• First MDS will we upgraded from OLD.X to NEW.0 keeping the MDS-
Storage same (i.e. fid-less or OLD.X MDS-Storage) using fail-over mech-
anism without losing‘ any functionality. Here clients can continue without
evictions. This will be achieved considering completion of changes in MDS
mention in the HLD and also the clients and OSTs ability to talk NEW.0
protocol.

• After MDS, clients and OSTs will be upgraded (one by one) from OLD.X
to NEW.0. Client and OST can be upgraded in any order. Note here that,
now we have NEW.0 clients and OSTs, which only speak NEW.0 wire
protocol.

• All clients, OSTs and MDS are upgraded to NEW.0 release.

• From here first NEW.0 client/OST can be downgraded to OLD.X in any
order. Even after downgrade, they will still have ability to talk NEW.0
protocol.

• Now we have OLD.X clients and OSTs. We know OLD.X clients and
OSTs are able to talk NEW.0 protocol. So MDS can be downgraded from
NEW.0 to OLD.X release (i.e. fid-less MDS and fid-less MDS-Storage).
without losing any functionality (This possible also because there is not
any disk-level changes in NEW.0 release).

• Finally all clients, MDT and OSTs will be running OLD.X release.

2. Upgrade and downgrade multiple times

12



5.3 Describe use cases demonstrating any scalability use cases mentioned in the
architecture document. 6 HIGH LEVEL LOGIC

To support the upgrade and downgrade operation multiple times (i.e. OLD.X->NEW.0-
>OLD.X->NEW.0), we need to take care of (or to remove) the fid inserted into inode ea,
by NEW.0 mds in NEW.0 release. The following two cases will describe the purpose
to do this and how it will taken care respectively.

• The purpose, to remove ea storing fid by OLD.X mds.

– OLD.X mds is upgraded to NEW.0 mds keeping OLD.X ldiskfs mds-storage
in tact.

– New file X is created by NEW.0 mds, with fid F.

– NEW.X mds is downgrade to OLD.X mds, again keeping mds-storage in
tact.

– OLD.X Client C0 accesses X, and gets (ino, gen) back. C0 takes a lock on
(ino, gen)

– Again OLD.X mds is upgraded to NEW.0 mds, keeping mds-storage in
tact.

– Client C1 accesses X, and gets F back. C1 takes a lock on F.

– Now we have two different clients accessing the same file and taking locks
in different name-spaces. So to avoid it, ea storing fid needs to be removed.

• When/how OLD.X mds will remove the fid ea.

– Any file access trigger, OLD.X mds to load an inode.

– OLD.X mds will first check whether the inode has fid ea.

– If the fid ea is present then remove it. This is how fid ea will be taken care
off.

5.3 Describe use cases demonstrating any scalability use cases men-
tioned in the architecture document.

N/A

6 High Level Logic

6.1 Index Operations:

In NEW.0 release, name->fid mapping will be maintained by storing fid into inode’s
ea. Following sections describe how name->fid mapping will be handled in file create,
lookup and delete operation.

13



6.1 Index Operations: 6 HIGH LEVEL LOGIC

6.1.1 File creation

When file is created in fid-enabled MDS, following main events (in which we are in-
terested) happened:

• name->fid mapping

In NEW.0 release, for name to fid mapping we want fid into inode ea and at
the same time fid should not touched (i.e. no removal or reinsertion) till it’s life
time.To server this purpose we will insert fid into inode ea when object is created
(i.e. in osd_object_create()) for a given file (of-course after inode allocation).
When actual name->fid mapping will be done (i.e. when osd_index_ea_insert()
is called) then ldiskfs style ({name, ino}) directory entry will be inserted using
ldiskfs_add_entry().

Hence using fid into inode ea and addition of directory entry, we will able to cre-
ate persistent name->fid mapping (i.e. name->dir_lookup()->inode->get_ea(fid)).

Note: There will be addition of file system specific calls while talking to ldiskfs
storage (e.g. ldiskfs_add_entry()) in osd module, in NEW.0. At the same time
NEW.1 has dmu-osd module to talk to ZFS. So it is worth to mention that in case
of merge of osd module and dmu-osd module file-system specific calls added for
interoperability, should be handled. It is also true that it might not required as
there will not be interoperability support when dmu will be used.

• fid->ino mapping

Fid->ino mapping is maintain in special file i.e. /oi. This mechanism can also be
used in NEW.0 release. So in NEW.0 release, no changes will be required for fid-
>ino mapping (i.e. it will be handled through IAM only or using osd_index_insert()).

6.1.2 File lookup

In fid-enabled MDS lookup is done by:

• Name

In NEW.0 release, for object lookup by name, osd_index_ea_lookup() will be
implemented to get fid for given name. Implementation details are as:

– When NEW object will be looked-up, fid will be fetched from inode’s ea
(.i.e. name->dir_lookup()->gut_ea(fid)) and

– When OLD object will be looked-up, igif will be generated, as no fid
stored in inode ea for OLD object (.i.e. name->dir_lookup()->gut_ea(fid)-
>no_fid_found->generate_igif()). Igif is nothing but dynamically gener-
ated fid, which consists of ino and inode generation.

14



6.2 Igif 6 HIGH LEVEL LOGIC

• Fid

In NEW.0 release there will not be any change in a way fid->ino mapping is
done. So there will not be any change for lookup by fid as well (i.e. exiting
osd_index_lookup() can be used).

Note: Also before calling to osd_index_lookup(), igif check is done to confirm
that osd_index_lookup will always get fid. So no need consider lookup by igif.

6.1.3 File delete

When file is delete in fid-enabled MDS, following main things happened (These are
the things in which we are interested in):

• name->fid mapping

In NEW.0 release. when to remove name->fid mapping (i.e. call to osd_index_ea_delete())
ldiskfs style directory entry will be removed (i.e. call to ldiskfs_delete_entry()).
This is applicable to OLD as well as NEW object. (or there will not be any
difference in OLD and NEW object handling)

Note: inode and fid related cleanup will be done by system when nlink count
becomes zero.

• fid->ino mapping

No changes will be required to remove fid->ino mapping (i.e. it will be handled
through IAM only or using osd_index_delete()).

6.2 Igif

6.2.1 To build igif

Now to support the new igif format, following things will be done:

fid->f_seq = ino;

fid->f_oid = gen;

fid->f_ver = LUSTRE_FID_VERSION;

6.2.2 To check igif

This will implemented considering following facts:

• SEQ == 1, igif

• 1<SEQ<0x100000000; Reserved

• SEQ >= 0x100000000, normal FID.

15



6.3 Iterator operations 6 HIGH LEVEL LOGIC

6.3 Iterator operations

In NEW.0 release to support iterator operation, we need fill struct dt_index_operations-
>dio_it with interoperability (i.e. ldiskfs storage) based function pointers.Their func-
tionality is described below:

• struct dt_it

It will contains fields to store file pointer (i.e. struct file * oie_file) and dentry
(i.e. struct dirent64 * oie_dentry)

• dio_it->init()

To initialize the iterator data structure i.e. it->oie_file and it->oie_dentry.

• dio_it->fini()

To destroy the iterator context

• dio_it->get()

To traverse the iterator’s in memory structure and return the value (i.e. fid) for
given input key (i.e. name).

• dio_it->put()

Just to decrement the reference count.

• dio_it->del()

To delete the value for current key position stored in iterator’s in memory struc-
ture.

• dio_it->key()

To return the key (i.e. name) at current position from iterator’s in memory struc-
ture.

• dio_it->key_size()

return the value of key size at current position from iterator’s in memory struc-
ture.

• dio_it->rec()

To return the value (i.e. packed fid/igif) at current position

– new_obj: load_inode->getxattr(fid)->return it

– old_obj: load_inode->generate_igif-> return it

• dio_it->store()

To return a cookie for current position of the iterator head,so that user can use
this cookie to load/start the iterator next time.

16



6.4 Mount 7 STATE MACHINE DESIGN

• dio_it->next()

It will call function (say osd_ldiskfs_it_fill()) which will use ldiskfs_readdir()
to load the one directory entry at a time and stored it, in-memory iterator’s data
structure.

• dio_it_load

It will call function (say osd_ldiskfs_it_fill()) which will use ldiskfs_readdir()
to load the one directory entry at a time and stored it, in-memory iterator’s data
structure.

6.4 Mount

In NEW.0 release, fid-enabled MDS will be running on fid-less (i.e. OLD) storage and
it will use OLD control

files (e.g. /last_rcvd, /ROOT, /PENDING, etc.) where possible. These things will be
taken care to make up-grade transparent to user.

6.5 To remove fid ea

When OLD.X MDS loads an inode, it will has to check whether the inode has fid ea
(i.e. created by NEW.0 server) and if so, such fid ea will be removed.

7 State Machine Design

7.1 Locking

N/A

7.2 Cache Usage

N/A

7.3 Recovery

Recovery related details not in the scope of this document.

7.4 Disk state changes

N/A as no disk changes.

17



9 PLAN REVIEW

8 Test Plan

For each test configuration, all the test-cases mention in test case table will be executed.

8.1 Test case:

Test case ID Test case description Expected Result
obj_create object creation through file create (e.g. touch file_name) file creation success

obj_lookup_new new object lookup through file lookup (e.g. ls file_name) lookup returns valid values
obj_lookup_old old object lookup through file lookup (e.g. ls file_name) lookup returns valid values
obj_delete_new new object deletion through file deletion (e.g. rm file_name) delete returns success
obj_delete_old old object deletion through file deletion (e.g. rm file_name) delete returns success

obj_rename_new rename of new object through file rename (e.g. mv a b) rename returns success
obj_rename_old rename of old object through file rename (e.g mv a b) rename returns success

read_dir execute a command to read the directory (i.e. ls <no input>) command returns valid values
del_dir execute a command to delete the directory (i.e. rmdir file) delete returns success

8.2 Test configuration:

Sr.No. Description Client OST MDS
1 Clients and OSTs and MDT running OLD.X version OLD.x OLD.x OLD.X
2 MDS upgraded to NEW.0 version OLD.X OLD.x NEW.0
3 Client & OST is upgraded to NEW.0 version NEW.0 NEW.0 NEW.0
4 Client & OST is downgraded to OLD.X version OLD.X OLD.x NEW.0
5 MDS downgraded to OLD.X version OLD.X OLD.x OLD.X

9 Plan Review

18


