
Ptlrpc and related modules cleanup

The purpose of cleanup is to simplify client side c ode, make Lustre client be easier to
be accepted/merged to upstream Linux kernel. By the cleanup, kinds of server side
specific handlings are removed, kernel modules imag e size and memory footprint are
reduced, some server side kernel modules or kernel threads need not be loaded/started at
client.

This document is the design of ptlrpc and related m odules cleanup. Section 1 illustrates
the cleanup works in detail. The cleanup introduces some differences between Lustre’s
client side code and Lustre main code tree, and sec tion 2 will discuss about the side
effects and code maintenance.

1 Client side cleanup

1.1 Remove server side connection/disconnection handling

Several server side connection/disconnection functi ons can be removed from client.

Impacted files: ldlm/ldlm_lib.c, ldlm/ldlm_lockd.c.

These functions can be removed (grey color is for internal static function):
server_disconnect_export, target_handle_reconnect , target_client_add_cb,
target_handle_connect, target_handle_disconnect, an d target_destroy_export.

Those functions are only used at server side. But a s both obdecho client and server are
encapsulated in a single kernel module, we need to split it as next subsection described.

1.2 Split obdecho client and server

Obdecho is a testing/benchmarking tool for Lustre, it is not in the critical path but we
need to split the obdecho client and server to make the cleanup in section 1.1 being
safe.

Impated files: obdecho/echo.c, obdecho/echo_client.c, and building process.

Main changes are obdecho_init/obdecho_exit and buil ding process. Client side built
obdecho.ko only has client side handling, while obd echo.ko at server side has both client
and server handling. So users can use it same as be fore. We can also build kernel module
with different name (obdecho_cli.ko and obdecho_srv .ko) as discussed in section 2.1.

1.3 Remove server side recovery handling

Sever side recovery handling can be removed from cl ient, this is quite a big stuff for
cleanup.

Impacted files: ldlm/ldlm_lib.c, ldlm/ldlm_lockd.c, ptlrpc/p tlrpc_module.c,
ptlrpc/recov_thread.c, lustre/include/lustre_log.h.

These functions can be removed: target_request_copy_get , target_request_copy_put ,
target_exp_enqueue_req_replay , target_finish_recovery , abort_req_replay_queue ,
abort_lock_replay_queue , target_cleanup_recovery, target_cancel_recovery_t imer,
target_start_recovery_timer , extend_recovery_timer , check_and_start_recovery_timer ,
exp_connect_healthy , exp_req_replay_healthy , exp_lock_replay_healthy , exp_vbr_healthy ,
exp_finished , check_for_clients , check_for_next_transno , check_for_next_lock ,
target_recovery_overseer , target_next_replay_req , target_next_replay_lock ,
target_next_final_ping , handle_recovery_req , target_recovery_thread ,
target_start_recovery_thread , target_stop_recovery_thread, target_recovery_fini ,
target_recovery_expired , target_recovery_init, target_process_req_flags ,
target_queue_recovery_request.

Client side ptlrpc_init/ptlrpc_exit can be changed to not call llog_recov_init/
llog_recov_fini. The main functions in prltpc/recov _thead.c can be removed, except that

llog_obd_repl_cancel (and its internal static funct ions) would remain to be used by
client side OSC module.

1.4 Remove server side bulk I/O

For bulk I/O, client side use ptlrpc_register_bulk/ ptlrpc_unregister_bulk to register
bulk buffer. Server side issued bulk I/O related fu nctions can be removed from client.

Impacted files: ldlm/ldlm_lib.c, ptlrpc/sec.c, ptlrpc/niobuf.c, ptlrpc/ptlrpc_module.c.

These functions can be removed:
Ldlm/ldlm_lib.c’s target_bulk_io,
ptlrpc/sec.c’s sptlrpc_svc_wrap_bulk, sptlrpc_svc_u nwrap_bulk, sptlrpc_svc_prep_bulk,
ptlrpc/niobuf.c’s ptlrpc_start_bulk_transfer, ptlr pc_abort_bulk.

1.5 Remove server side specific lock handling

Some server side specific lock handling can be remo ved from client side.

1.5.1 Remove server side issued ASTs

Blocking/completion/glimpse ASTs are sent from serv er to client, related codes can be
removed from client.

Impacted files: ldlm/ldlm_lockd.c.

These functions can be removed: ldlm_server_blockin g_ast, ldlm_server_completion_ast,
ldlm_server_glimpse_ast, and their internal static functions ldlm_failed_ast ,
ldlm_handle_ast_error , ldlm_cb_interpret , ldlm_bl_and_cp_ast_tail , ldlm_lock_reorder_req .

1.5.2 Need not start ldlm_cancel_service

ldlm_cancel_service need not be started at client s ide.

Impacted files: ldlm/ldlm_lockd.c

Change ldlm/ldlm_lockd.c’s ldlm_setup/ldlm_cleanup, need not start/stop
ldlm_cancel_service. ldlm_cn_xx kernel threads will not be started at client side.
These functions can be removed: ldlm_cancel_handler , ldlm_handle_cancel,
ldlm_request_cancel.

1.5.3 Remove ldlm policy functions

Ldlm policy functions are only used by server, we c an remove it from client. However, we
need some other code changes to remove some code de pendencies.

Impacted files: ldlm/ldlm_lock.c, ldlm/ldlm_lockd.c, ldlm/ldlm_plain.c, ldlm/extend.c,
ldlm/ldlm_flock.c, ldlm/inodebits.c.

Changes ldlm/ldlm_lock.c’s ldlm_lock_enqueue, remov es ldlm_processing_policy_table
calling as actually it is not called at client (if (local) GOTO out;).
Changes ldlm/ldlm_lock.c’s ldlm_reprocess_all, remo ves calling of ldlm_reprocess_queue
(inside which calls ldlm_processing_policy_table) a s actually it is not called at client
(if (ns_is_client) return;).
Changes ldlm/ldlm_lock.c’s ldlm_lock_convert, remov es calling of
ldlm_processing_policy_table as actually it is not called at client (if ns_is_client else
).

By the above changes, we can remove the client side dependency of
ldlm_processing_policy_table. Then we can remove re lated policy functions at client side:
ldlm_process_plain_lock, ldlm_process_extent_lock, ldlm_process_flock_lock,
ldlm_process_inodebits_lock. And many internal stat ic functions inside ldlm/ldlm_plain.c,
ldlm/extend.c, ldlm/ldlm_flock.c and ldlm/inodebits .c can be removed from client.

1.5.4 Remove ldlm_handle_enqueue /ldlm_handle_convert etc.

Impacted files: ldlm/ldlm_lockd.c, ldlm/ldlm_lock.c.

These functions are only used by server side and ca n be removed from client:
ldlm/ldlm_lockd.c’s ldlm_svc_get_eopc , ldlm_handle_enqueue0, ldlm_handle_enqueue,
ldlm_handle_convert0, ldlm_handle_convert, ldlm_rev oke_export_locks, ldlm_revoke_lock_cb;
ldlm/ldlm_lock.c’s ldlm_lock_downgrade, ldlm_cancel _locks_for_export,
ldlm_cancel_locks_for_export_cb.

1.6 Remove lquota module from client

Now lquota kernel module has no dependencies at cli ent, but will be compiled and loaded
at client side by default.

There are some other quota related codes bracketed by “#ifdef HAVE_QUOTA_SUPPORT …
#endif” macro. These codes need not to be compiled for client.

We can change the building process – only compile l quota and define HAVE_QUOTA_SUPPORT as
1 when Lustre is configured without “--disable-serv er” option and without “--enable-
quota=no” option.

1.7 Others

There are some Obsolete functions in the code and w ithout any callers, such as
ptlrpc_prep_req, ptlrpc_prep_req_pool, llog_handle_ connect, ldlm_cli_convert etc. We can
remove them in the case that it need not be remaine d for future’s reference.

There are also some only server side needed functio ns, such as target_handle_ping,
target_committed_to_req etc.

However, it is difficult and un-necessary to make c lient side code to be “fully clean”.
Currently we only need to remove main server side h andling mentioned from section 1.1 to
section 1.6.

2 Side effects and code maintenance

Because the code changes introduced in section 1, t here will be some code differences
between client side and server side. We need to con sider some side effects and the code
maintenance.

2.1 Use same or different kernel module name

For example, the kernel module ptlrpc and obdecho w ill be different in client and server.

Option 1: use same kernel module name.
Don’t change the kernel module names, client and se rver side use the same kernel module
name, but possibly with different content. Server s ide kernel modules will have all
content including client side code as before, while client side kernel modules will be a
reduced version – some server specific handling cod e is removed.

Option 2: use different kernel module name.
For example, client side loads ptlrpc_cli.ko, while server side loads ptlrpc_srv.ko. In
the case that Lustre client will be loaded in serve r, server side will load both
ptlrpc_cli.ko and ptlrpc_srv.ko. Here we may need t o separate the common
parts(ptlrpc_comm.ko) which ptlrpc_cli.ko and ptlrp c_srv.ko shares.

Option 2 will introduce significant change to the c ode tree (need to split the client
part, server part and common part) and building pro cess, will affect some users’
conventional usage, also need to change some testin g tools/scripts.

2.2 Code maintenance

How to maintain client side code (which needs to be pushed to upstream Linux kernel)
together with Lustre main code tree?

Option 1: use macro to comment out the cleaned-up codes for client
Use a special macro to comment out the cleaned-up c odes. Here we have two methods for the
macro:

a) use pre-defined HAVE_SERVER_SUPPORT macro
Users will get different kernel modules when compil ing Lustre with or without “--
disable-server” configuration option. Some kernel m odules inside lustre-client-
modules-xxx.rpm and lustre-modules-xxx.rpm may have same name and different
content.

b) use other specific new macro such as CLIENT_SIDE_CL EANUP
This will not affect common usage.

We can use a tool to fork a client-side code tree f rom Lustre main code tree. This tool
can remove server side specific handling (by recogn izing “#ifdef HAVE_QUOTA_SUPPORT …
#endif” or “#ifdef CLIENT_SIDE_CLEANUP … #endif”) w hile coping out source files from
Lustre main code tree. The tool can be a separate s cript or just using automake framework
(for example: make cleanclient).

After Lustre client being merged to upstream Linux kernel, in the case that somebody
finds bugs in kernel and submits patch for that, th at patch can also be patched to Lustre
main code tree (possibly with some warnings as file offset difference).

Option 2: Fully split client part, server part and common part codes
Split the client part, server part and common part codes. This will introduce many
significant code changes to Lustre main code tree, also will change many source code
files’ name (such as xxx_cli.c, xxx_srv.c, xxx_comm .c). The building process also need
changes. It is difficult to make the split in the c ase we change common functions, for
example modue_init or ldlm_lock_enqueue etc.

